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1 Problem Statement 
To accurately model landscape changes and the ecological consequences of the those 
changes overtime (McGarigal et al 2017), it is essential to account for vegetation 
disturbance processes and subsequent vegetation development (succession). Natural 
disturbances such as fire, wind, pathogens, floods, etc. and anthropogenic disturbances 
such as timber harvest are integral to determining the distribution of forest age/structure 
over the landscape. Disturbance models are therefore necessary to maintain a realistic 
distribution of stand age/structure overtime, preventing the landscape from uniformly 
succeeding to old-growth forest. Succession models then track changes of forest vegetation 
characteristics (e.g., biomass) as a forest undergoes succession following a disturbance. 
Specific forest vegetation characteristics are often important components of species-habitat 
models. Therefore, models of forest disturbance and succession are needed to account for 
the dynamic nature of forest vegetation characteristics in models that evaluate the effects of 
predicted changes in urban development and climate on a landscape’s capability to support 
wildlife populations at future time steps. 

2 Solution Statement 
To model succession, we used FIA data to predict above-ground live biomass from stand 
age, growing degree days, growing season precipitation, soil pH, soil depth and soil 
available water supply by groups of similar forested ecological systems (hereafter, 
"macrogroup"). Thus, succession is implemented as a deterministic process in which each 
cell is attributed with the suite of ecological settings variables, and the predicted growth in 
biomass derived from a fitted statistical model for the corresponding macrogroup is added 
to the current biomass at each timestep. 

To model disturbance, we used Forest Inventory and Analysis (FIA) data on total above-
ground live biomass sampled at fixed locations over time to estimate the probability of 
vegetation disturbance per decade as a function of biomass by ecological region within 
forested ecological systems. We also used FIA data to model the severity of disturbance 
within each ecoregion, defined as the proportional loss of existing biomass. Lastly, we used 
the High-Resolution Global Maps of 21st-Century Forest Cover Change (Hansen et al. 2013) 
to model the disturbance patch size distribution. Thus, disturbance is implemented as a 
multi-stage stochastic process in which we first we randomly initiate disturbances within 
each ecoregion in forested ecological systems, and then randomly determine the severity of 
disturbance and patch size, and then grow the disturbance patch from the initiation cell.  

3 Methods 

3.1 FIA data 
Given our reliance on FIA data in both the succession and disturbance model, a brief review 
of FIA is warranted. The FIA program of the U.S. Department of Agriculture Forest Service 
collects and makes publicly available detailed information of public and private forest 
stands within the U.S. Although FIA began collecting data in the early 1930’s, FIA enhanced 
inventories from regional, periodic inventories to nationally consistent, annual inventories 
in the mid-1990’s. Phase 2 of the enhanced FIA protocol samples fixed locations at a 



DSL Project Component:  Modeling succession and disturbance 

density of one plot per 2,428 ha (intersections of a 5 km grid). Each plot consists of four, 
18m radius subplots and 20% of plots within a state are sampled each year such that all 
plots within a state are sampled every 5 years (Bechtold and Patterson 2005). Typical FIA 
measurements describe:  

• Tree diameter, length, damage, quality 
• Tree regeneration 
• Site quality 
• Stocking 
• Land use 
• Forest type, stand age, and disturbance 
• Tree growth, mortality and removals 

FIA data is made publicly available (http://apps.fs.fed.us/fiadb-
downloads/datamart.html), however the geographic location of a plot is relatively 
confidential. Only the state in which a plot is located is made available. However, we were 
able to obtain permission to access the plot location data. FIA collects data for every tree 
within a plot and consequently the FIA database can be extremely complex. Therefore, we 
used the Forest Vegetation Simulator (FVS) to convert FIA data into the variable we were 
interested in: above-ground live biomass (Crookston 1997, Dixon 2003, Crookston and 
Dixon 2005). 

3.2 Forest succession 
We developed a statistical model of succession in forested ecological systems. This model 
was developed with the understanding (due to limited resources) that it was not intended to 
explicitly model the demographic processes that determine individual plant dispersal, 
establishment, growth, and mortality, or account for the community-level interactions 
among multiple competing species that ultimately determine the composition and structure 
of a forest stand. Rather, the intention of this model is to provide a simply but reasonably 
realistic representation of vegetation succession across the landscape that reflects the gross 
changes in forest structure over time due to vegetation development. In particular, we 
determined that it would be sufficient to model biomass change over time as an indicator of 
forest succession, and subsequently use biomass as a surrogate for successional stage in the 
wildlife-habitat relationships models.  

3.2.1 Initial (current) biomass 
A preprocessing step required for the vegetation succession model is to create the initial 
biomass grid for the current condition in 2010. For this purpose we used the Woods Hole 
NACP Aboveground National Biomass and Carbon Baseline Data V.2 (Kellndorfer et al. 
2013) estimate of biomass and updated it with the High-Resolution Global Maps of 21st-
Century Forest Cover Change (Hansen et al. 2013) and forest succession models to generate 
the current biomass grid (see biomass settings variable document for details, McGarigal et 
al 2017), as follows: 

1) start with the NBCD dataset as the initial estimate of biomass for the year 2000; 

http://apps.fs.fed.us/fiadb-downloads/datamart.html
http://apps.fs.fed.us/fiadb-downloads/datamart.html
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2) convert biomass to expected stand age based on the appropriate regression model (as 
described below) for the corresponding macrogroup that describes biomass change as 
a function of stand age and a suite of ecological settings variables (growing degree 
days, growing season precipitation, soil pH, soil depth and soil available water 
supply). Note, any biomass value that exceeds the predicted value for stand age = 220 
years (the maximum observed stand age in the FAI dataset) is assigned a stage age of 
220; 

3) advance stand age forward to 2012 (for consistency with the Hansen et al. data) by 
adding 12 years to stand age; 

4) set stand age to the age since disturbance based on the Hansen et al. map of recent 
(2000-2012) stand-replacing disturbances. For example, a cell that was disturbed in 
2005 would have an age of 7, whereas an undisturbed cell would have the predicted 
age in 2000 plus 12 years from step 3; and 

5) apply the appropriate regression models to convert the adjusted stand ages in 2012 to 
predicted biomass. 

The process above results in a map of predicted biomass for 2012, which we consider as the 
baseline condition in 2010.  

3.2.2 Biomass development 
We model forest succession as the growth in biomass over time. For this purpose we used 
FIA data on biomass and stand age at 14,457 fixed locations to estimate the growth in 
biomass per decade by forested macrogroup as a function of stand age and a variety of 
static and dynamic ecological settings variables, as follows: 

1) select FIA plots within forested ecological systems (based on the DSLland map) that 
were sampled at least once between 1982-2012 (N=14,910); 

2) treat each sampling occasion at each plot as an independent observation (N=36,486). 
Note, 2,175 plots were sampled once, 5,182 twice, 6,345 three times, and 1,207 four 
times between 1982-2012; 

3) drop any observation in which age=0 and biomass>0, or age>0 and biomass=0, as 
these were suspect observations (adjusted N=33,560 observations at 14,470 
locations); 

4) drop any observation with missing biomass or stand age data (adjusted N=33,447 
observations at 14,457 locations); 

5) drop all but the last sampling occasion at each plot to avoid pseudo-replication 
(N=14,457 observations at 14,457 locations). Note, in contrast to the disturbance 
modeling, here we deemed multiple observations from the same plot as problematic 
given the nature of the model and opted to keep only a single observation from each 
plot, which we arbitrarily chose to be the last sampling occasion. Note, keeping all 
observations and pseudo-replicating does not change the results; 

6) use non-linear least squares regression to estimate the parameters of a 
monomolecular function (a.k.a. asymptotic exponential function) that describes the 
increase in biomass with stand age for each macrogroup, and if the sample size for the 
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macrogroup is >30, allow the asymptote of the function to vary as a function of 
growing degree days (gdd), growing season precipitation (precipgs), soil pH (soil.ph), 
soil available water supply (soil.aws) and/or soil depth (soil.depth). Note, gdd and 
precipgs are dynamic covariates since their values change over time in the model, 
whereas soil.ph, soil.aws and soil.depth are static covariates since their values are 
treated as constant over time. First, fit a minimum model containing only stand age 
and no additional covariates. Next, for macrogroups with >30 observations, add a 
second covariate to the model allowing it to adjust the asymptote of the 
monomolecular function, but only if the additional covariate is significant and 
choosing the covariate that is most significant. Continue to evaluate the addition of 
covariates in a forward stepwise fashion until no additional significant predictors can 
be added to the model. Note, soil available water supply was fit as a quadratic 
polynomial since it was reasoned that within the range of conditions sampled that 
biomass (i.e., productivity) would be greatest at intermediate vales and would be 
depressed if the soil were too wet or too dry. The full model containing all significant 
predictors has the following form: 

𝑦 = (𝑎 +  𝑐 ∙ 𝑔𝑑𝑑 + 𝑑 ∙ 𝑝𝑟𝑒𝑐𝑖𝑝𝑔𝑠 + 𝑒 ∙ 𝑠𝑜𝑖𝑙. 𝑝ℎ + 𝑓 ∙ 𝑠𝑜𝑖𝑙.𝑑𝑒𝑝𝑡ℎ + 𝑔 ∙ 𝑠𝑜𝑖𝑙.𝑎𝑤𝑠               
+  ℎ ∙ 𝑠𝑜𝑖𝑙.𝑎𝑤𝑠2) ∙ (1 − 𝑒−𝑏∙𝑎𝑔𝑒) 

where y = biomass, a = parameter that controls the asymptote, b-h are parameters of 
the corresponding spatial covariates.  

The process above results in a non-linear regression model for each forested macrogroup in 
which the predicted biomass increases monotonically to an asymptote as a function of 
stand age as modified potentially by one or more spatial ecological settings variables 
reflecting climate conditions during the growing season and soil conditions affecting 
productivity (Table 1). The ecological settings variables affect the height of the asymptote 
and thus determine whether a forest stand in a particular macrogroup will produce more or 
less biomass over time than the average stand for that macrogroup (Fig. 1). Note, we 
considered several other plausible functional response forms such as the Michaelis-Menton 
function, which is a common functional response used in ecology to define plant growth 
with competition over time, the hyperbolic function, which is a common functional 
response used in ecology to define plant density with competition over time, and the 
Holling type III function, which is similar to the Michaelis-Menton but has a sigmoidal 
shape (Bolker 2008), but the monomolecular produced superior fits as judged by the 
minimum least squares criterion. Lastly, we made a general comparison of our biomass 
growth trajectories to similar values in the literature to ensure that our estimates were 
within reason for the region (Brown et al. 1997). 

We used the epi.ccc function in the R package epiR (Stevenson et al. 2011) to calculate the 
concordance correlation coefficient (CCC)(Lin 1989) between values predicted by the 
growth trajectory models and the observed values derived from FIA. An assessment of the 
correlation coefficients between fitted and observed values appears to be a reasonable  
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Table 1. Non-linear regression models based on a monomolecular function to predict above-ground live biomass (Mg/ha) 
as a function of stand age, growing degree days (gdd), growing season precipitation (precipgs), soil pH, soil depth and soil 
available water supply (soil.aws) for forested macrogroups in the Northeast; N is the number of FIA plot locations sampled 
between 1997-2012; a is a parameter of the monomolecular function that affects the rate of increase in biomass during the 
early years of growth; the value for each of the environmental covariates determines how the asymptote of the 
monomolecular function is affected, with positive values indicating an increase in the asymptote above the mean with an 
increase in the covariate (note, soil available water supply is given as a quadratic polynomial such that the asymptote is 
highest at intermediate values); R2 is a measure of the percentage of variance in biomass explained by the model; CCC is 
the coefficient of concordance between observed and predicted values. 

Macrogroup N a Age Gdd Precipgs Soil 
ph 

Soil 
depth 

Soil 
aws 

Soil 
aws2 R2 CCC 

Boreal Upland 
Forest  1,430  82.16 0.017 - 0.0006 - - - - 0.20 0.29 

Central Hardwood 
Swamp       29  195.96 0.019 - - - - - - 0.22 0.28 

Central Oak-Pine 4,543  -99.72 0.023 0.0004 0.0010 5.27 - 49.68 -5.25 0.26 0.39 
Coastal Plain Peat 
Swamp        17  195.96 0.019 - - - - - - 0.37 0.42 

Coastal Plain 
Swamp  200  -543.16 0.030 0.0013 - 46.8 - 129.74 -16.58 0.27 0.41 

Northeastern 
Floodplain Forest  28  195.96 0.019 - - - - - - 0.14 0.23 

Northern 
Hardwood & 
Conifer 

 7,455  -68.74 0.016 0.0006 0.0016 9.15 0.0946 - - 0.25 0.37 

Northern Swamp     659  -238.49 0.016 0.0009 0.0015 28.2 0.0969 - - 0.23 0.33 
Southern 
Bottomland Forest       68  -284.40 0.070 0.0019 - - - - - 0.10 0.15 

Southern Oak-Pine 4 195.96 0.019 - - - - - - 0.33 0.48 

Tidal Swamp 24 195.96 0.019 - - - - - - 0.20 0.28 
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method to assess model fit (Hsieh et al. 2008, Glaser et al. 2011). Although we do report R2 
values in table 1, it can be a misleading indicator of model fit since residuals in nonlinear 
regression often do not add to zero (Ritz and Streibig 2008). Note, the R2 and CCC values 
are relatively low, reflecting the fact that numerous unaccounted for factors (e.g., 
competition, herbivory, etc.) influence the realized biomass at a site at any point in time, 
but we feel that they are acceptable given our interest in representing the general pattern of 
vegetation development at the regional scale. 

3.2.3 The succession model 
The forest vegetation succession model consists of the following steps: 

1) mask out areas that are not forested so that succession only occurs in forested cells; 

2) convert current biomass to expected stand age based on the statistical model for the 
corresponding macrogroup and, depending on the model, accounting for the static 
and dynamic spatial ecological setting of the cell; and 

 
Figure 1. Scatter plot of above-ground live biomass (Mg/ha) against stand age (years) for 
7,455 Forest Inventory and Analysis (FIA) plots distributed throughout Northern 
Hardwood and Conifer forests in the Northeast, along with the fitted non-linear regression 
line based on the monomolecular function given in the title at the mean, minimum and 
maximum of the covariates (growing degree days, growing season precipitation, soil pH, 
and soil depth.  
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3) for each timestep of the model, increment stand age by 10 years and covert stand age 
back to expected biomass based on the corresponding statistical model as in step 2 (as 
described below).  

Note, because some of the ecological settings variables are dynamic (i.e., change over time; 
e.g., growing degree days and growing season precipitation), we convert current biomass to 
expected stand age based on the current ecological settings values and the appropriate 
statistical model, predict the growth for the next 10 years based on that statistical model, 
compute the delta biomass (i.e., difference in biomass over 10 years), and add the delta to 
the original biomass. In this manner, we ensure a smooth biomass growth curve while 
adjusting the growth rate for the changing ecological conditions. 

It is important to note three things about the succession model: 

1. Stand age is used internally as a convenient state variable to track to state of each cell 
over time, but we are not interested in stand age per se and thus it is not reported as 
an outcome of the model; rather, we are interested in modeling the change in biomass 
over time. Unfortunately, modeling the growth in biomass as a function of biomass 
was not successful due to the noise in the FIA biomass data, so we opted to model the 
growth in biomass as a function of stand age based on the underlying assumption that 
biomass should increase with stand age in a somewhat predictable manner (in the 
absence of disturbance). 

2. Because we estimate biomass based on the predicted (or expected) value from the 
non-linear regression model, we end up modeling growth in biomass as a 
deterministic rather than stochastic process. The estimated biomass of a cell for any 
timestep is given by the predicted value from the non-linear regression model. Thus, 
given any particular stand age and values for the relevant spatial ecological settings 
variables, we get the same predicted biomass. We deemed this appropriate since we 
are more interested in the expected or long-term average patterns in biomass rather 
than the stochastic outcome of any single landscape change trajectory, but we 
recognize that this eliminates the stochasticity that is present in any real-world 
landscape change trajectory.  

3. Because we convert current biomass to the expected biomass for the corresponding 
stand age and ecological setting, we eliminate the noise, or error, in the originally 
observed biomass. The original biomass data contains significant variability that 
cannot be explained by stand age and the chosen ecological settings variables. 
Unfortunately, there is no way to maintain this unexplained variability without 
projecting unrealistic biomass values in the future. Thus, the modeled biomass for 
both the baseline year of 2010 and the future decades (2010-2080) are much less 
heterogeneous than exists in reality. 

3.3 Forest vegetation disturbance  
We developed a multi-stage statistical model to initiate and spread disturbances in forested 
ecological systems. This model was developed with the understanding (due to limited 
resources allocated to this modeling component) that it was not intended to explicitly 
model specific disturbance drivers (e.g., fire, wind, floods, ice, timber harvest, etc.). Rather, 
the intention of this model is to provide a reasonably realistic representation of vegetation 
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disturbance across the landscape, with the intent to develop a more complex disturbance 
model that varies depending on the disturbance driver in a subsequent phase of this 
project. Note, this is a significant limitation in the current model. In particular, the current 
model does not account for policy differences among land ownerships with regards to 
vegetation management (e.g., timber harvest), which we know to be an important 
determinant of disturbance rate, severity and patch size. Despite this limitation, our goal in 
this phase of the project is to emulate the overall frequency, severity and size of forest 
vegetation disturbances characteristic of the past 10-20 years and provide the ability via 
scenario analysis to increase or decrease the overall disturbance rate to reflect future 
uncertainty in both natural and anthropogenic disturbance regimes.  

The forest vegetation disturbance model consists of the following steps: 

1) mask out areas that are not forested so that disturbances cannot initiate or spread into 
these cells; 

2) within each ecoregion, pick a cell at random and determine whether to initiate a 
disturbance based on the corresponding probability of disturbance model (as 
described below); 

3) if the cell initiates a disturbance, determine the severity of disturbance (i.e., the 
proportional reduction in existing biomass) based on the corresponding probability 
model (as described below); 

4) determine the size of the disturbance patch based on the corresponding probability 
distribution (as described below); 

5) create the disturbance patch using a resistant kernel from the initiation cell (as 
described below) and when disturbance events overlap retain the more severe 
disturbance; and 

6) repeat steps 1-5 for each undisturbed cell. 

3.3.1 Disturbance initiation 
The first stage of the disturbance model is determining the initiation of individual 
disturbance events. For this purpose we used FIA data on biomass at 11,171 fixed locations 
to estimate the probability of vegetation disturbance per decade as a function of biomass by 
ecological region within forest ecological systems, as follows: 

1) select FIA plots within forested ecological systems (based on the DSLland map, 
McGarigal et al 2017) that were sampled at least twice between 1997-2012 (N=11,180); 

2) treat each sampling interval between 1997-2012 at each plot as an independent 
observation (N=14,254). Note, 8,384 plots have 1 sampling interval; 2,519 plots have 2 
sampling intervals; and 276 plots have 3 sampling intervals. Note, selecting a single 
sampling interval for each plot or adding plot ID as a random effect in a mixed effects 
model to avoid pseudo-replication does not change the results, so we kept all sampling 
intervals and ignored the random effect of plot ID; 

3) drop any observation with missing biomass data (N=14,239 observations at 11,171 
locations); 

4) truncate biomass at 500 Mg/ha, which represents a reasonable upper limit on biomass 
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for forests in the Northeast; values exceeding this threshold are more than likely 
errors in the database. Note, dropping all observations with biomass>500 does not 
change the results; 

5) create a disturbance indicator variable to treat as the dependent variable in a binary 
logistic regression based on whether biomass increased during the sampling interval 
(0) or decreased during the sampling interval indicative of a disturbance (1); 

6) fit a binary logistic regression with binomial errors separately for each ecoregion to 
predict the annual probability of disturbance as a function of biomass. Here, 
disturbance indicator is the dependent variable, biomass at the start of the sampling 
interval is the independent variable, and the sampling interval in number of years is 
the trial size. Note, trial size (or sampling interval) varied from 1-10 years with a mean 
of 5 years. Here, we are forced to assume that if a disturbance was recorded (i.e., an 
observed decrease in biomass) that it happened in a single year during the sampling 
interval, which is entirely reasonable for anthropogenic disturbances and may slightly 
under estimate the frequency of natural disturbances. The fitted model predicts the 
annual probability of disturbance given the current biomass;  

7) convert the model predictions to decadal probabilities of disturbance. Specifically, use 
the fitted models to predict the probability of not being disturbed for 10 years, and 
take the compliment;  

8) convert the decadal probability of disturbance to the probability of initiation by 
dividing by the expected mean disturbance size for the corresponding ecoregion to 
account for the fact that disturbances spread from the initiation cell to surrounding 
cells (equal to on average the number of cells in an average disturbance event); and 

9) lastly, adjust the cell-level probability of initiation to correct for the downward bias in 
disturbance that occurs when disturbances overlap. 

The process above results in a fitted logistic regression for forested systems within each 
ecoregion (Table 2), and the conversion to decadal probability of disturbance results in the 
logistic curves shown in figure 2. It is important to note a few things about these results. 
First, the p-values are highly significant for most ecoregions, indicating that biomass has a 
significant effect on the probability of disturbance, which is logical since disturbances 
(especially anthropogenic disturbances) and generally more likely to occur in older stands 
with greater biomass. However, in 4 of the 13 regions the scale parameter was not 
significant, indicating that biomass was not a major factor. Nevertheless, we opted to keep 
biomass in the model in these ecoregions for consistency and because the trends were 
intuitive and similar to the other ecoregions. Second, the proportion of deviance (analogous 
to variance) explained and the Kappa (chance-corrected correct classification rate) statistics 
are both quite low, indicating relatively weak ability to discriminate between disturbance 
events and non-disturbance events. However, this is not surprising and should not be 
alarming given the extremely low prevalence and highly stochastic nature of disturbances. 
Lastly, the logistic curves in figure 2 all indicate that the probability of disturbance 
increases with increasing biomass and moreover that it varies substantially among 
ecoregions. Not surprisingly, the Northern Appalachian/Acadian ecoregion has the highest 
predicted disturbance rate owing to the extensive industrial forest lands that are managed 
intensively for timber products. 
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Table 2. Logistic regression models to predict annual probability of disturbance as a 
function of above-ground live biomass (Mg/ha) by ecoregion for forest ecosystems in the 
Northeast. N is the number of FIA observations of biomass change over an average 5-year 
sampling interval between 1997-2012; a (location) and b (scale) are parameters of a 
standard 2-parameter logistic function; P-val is the p-value or significance of the scale 
parameter which determines the steepness of the logistic function; D2 is the proportion of 
the deviance explained; and Kappa is the chance-corrected correct classification rate. 

Ecoregion Area 
(ha) N a b P-val D2 Kappa 

Central 
Appalachian 

Forest 
9,664,780  1912 -3.77 0.0053 <0.001 0.042 0.142 

Chesapeake Bay 
Lowlands 4,398,613  398 -3.172 0.001 0.444 0.002 0.019 

Cumberlands 
and Southern 

Ridge and 
Valley 

2,415,159  407 -4.172 0.0063 <0.001 0.06 0.216 

Great Lakes 3,223,530  278 -3.639 0.0052 <0.001 0.057 0.033 
High Allegheny 

Plateau 6,836,508  1,670 -
3.908 0.005 <0.001 0.038 0.147 

Lower New 
England / 
Northern 
Piedmont 

9,414,710  1,545 -3.651 0.0031 <0.001 0.013 0.071 

North Atlantic 
Coast 5,073,767  349 -3.933 0.0039 0.009 0.013 0.09 

Northern 
Appalachian / 

Acadian 
13,214,337  5,408 -3.614 0.0074 <0.001 0.063 0.217 

Piedmont   4,113,189  769 -3.965 0.0065 <0.001 0.058 0.215 
Southern Blue 

Ridge     530,811  103 -3.768 0.0022 0.467 0.008 0.094 

St. Lawrence - 
Champlain 

Valley 
1,608,227  227 -3.465 0.0035 0.101 0.017 0.044 

Western 
Allegheny 

Plateau 
5,709,297  1,037 -3.725 0.0048 <0.001 0.035 0.154 

Mid-Atlantic 
Coastal Plain    891,912  136 -3.065 0.0029 0.193 0.014 0.187 
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3.3.2 Disturbance severity 
The second stage of the disturbance model is determining the severity of the disturbance 
event once initiated. For this purpose we again used FIA data on biomass at 11,171 fixed 
locations to estimate the proportional reduction in biomass for a disturbance event by 
ecological region within forest ecological systems, as follows: 

1) start with the data set derived above in step 3 containing 14,239 observations;  

2) keep all observations that record a loss of biomass, which we interpret as a 
disturbance (N=3,340 or 23.45% of all sampling observations); 

3) compute the proportional loss of biomass for the observations above by taking the 
delta-biomass divided by the initial biomass, and multiplying by -1 to make the result 
positive; and 

4) fit a beta distribution (which is appropriate for proportional response data) to the 
distribution above for each ecoregion. Note, the beta distribution contains two 

Figure 2. Predicted decadal probability of disturbance as a function of above-ground live 
biomass (Mg/ha) by ecoregion for forest ecosystems in the Northeast. Note, the probability 
of disturbance gives the probability that a disturbance event will occur during 1 of 10 years, 
but it does not reveal the severity of the disturbance; i.e., the proportional reduction in 
biomass. 
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parameters, shape 1 and shape 2, but an alternative parameterization is given in which 
shape 2 is specified in terms of the mean and shape 1. Here, we used the alternative 
parameterization, fixed the mean at the observed mean proportional loss of biomass 
for the corresponding ecoregion, and estimated shape 1. 

The process above results in a fitted beta error distribution for forested systems within each 
ecoregion (Table 3) and the corresponding fitted curves shown in figure 3. It is important 
to note a few things about these results. First, the mean overall disturbance severity across 
ecoregions is 0.24, indicating that on average approximately 1/4 of the biomass is lost in a 
disturbance event, although the average varies from 0.18-0.34 among ecoregions. Second, 
the probability of a low severity disturbance is considerably greater than that of a high 
severity disturbance across all ecoregions, as depicted in figure 2. Consequently, most 
disturbances will result in a small reduction in biomass, perhaps reflecting the loss of 
scattered canopy trees typical of a windstorm or ice damage. Lastly, whereas the rate of 
disturbance varies considerably among ecoregions (Fig. 2), the severity of disturbance per 
event is relatively similar among ecoregions, although a couple of ecoregions show a "U-
shaped" distribution with a slightly increased probability of a complete stand-replacing or 
high severity disturbance (Fig. 3).  

Table 3. Beta error models to determine the severity of disturbance, defined as the 
proportional reduction in above-ground live biomass (Mg/ha), by ecoregion for forest 
ecosystems in the Northeast; N is the number of FIA observations of biomass loss over an 
average 5-year sampling interval between 1997-2012; Y.mean equals the mean proportional 
loss of biomass; Shape1 and Shape2 are parameters of the beta probability density function. 

Ecoregion N Y.mean Shape1 Shape2 

Central Appalachian Forest 434  0.224 0.342 1.184 

Chesapeake Bay Lowlands     89  0.342 0.345 0.665 

Cumberlands & Southern Ridge and Valley 77  0.209 0.439 1.659 

Great Lakes 72  0.184 0.381 1.687 

High Allegheny Plateau 349  0.176 0.370 1.729 

Lower New England / Northern Piedmont 298  0.225 0.277 0.951 

North Atlantic Coast  50  0.243 0.285 0.886 

Northern Appalachian / Acadian 1,484  0.261 0.533 1.512 

Piedmont 168  0.267 0.358 0.984 

Southern Blue Ridge  16  0.199 0.861 3.474 

St. Lawrence - Champlain Valley 49  0.231 0.416 1.383 

Western Allegheny Plateau 213  0.234 0.378 1.237 

Mid-Atlantic Coastal Plain   41  0.298 0.247 0.580 
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3.3.3 Disturbance spread 
The final stage of the disturbance model is determining the size of the disturbance and 
creating the disturbance patch. For this purpose we used the High-Resolution Global Maps 
of 21st-Century Forest Cover Change (Hansen et al. 2013)(see description of the biomass 
settings variable for details, McGarigal et al 2017) to estimate the disturbance patch size 
distribution, as follows: 

1) generate a list of disturbance patch sizes by ecoregion from the Forest Cover Change 
dataset, in which a disturbance patch is defined as contiguous cells (based on the 8-
neighbor rule; i.e. ,touching either orthogonally or diagonally) having the same 
recorded age since disturbance. Note, the Forest Cover Change data set is based on 
severe disturbances that result in complete or nearly complete loss of canopy cover. 
Unfortunately, there is no dataset available for determining patches of low-severity 

 
Figure 3. Predicted probability density of disturbance severity (defined as the 
proportional loss of above-ground live biomass, Mg/ha) by ecoregion for forest ecosystems 
in the Northeast based on the beta error models given in table 2. Note, the density gives 
the relative probability that a disturbance event will be of a particular severity, but it does 
not indicate the frequency or rate of disturbance. The relatively high probability density for 
very small proportional loss of biomass values reflects the fact the most disturbances are of 
low severity. 
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disturbances, so we are forced to use the distribution of high-severity disturbances as 
representative of all disturbance patch sizes; and 

2) fit a generalized Pareto distribution to the patch size distribution above for each 
ecoregion. Note, the generalized Pareto distribution contains two parameters, shape 
and scale, and is a heavy-tailed distribution commonly used to fit heavily right-skewed 
distributions with a long right tail (i.e., very few very large values). However, because 
the observed distribution of patch sizes was so heavily skewed, we fit the distribution 
to the log-transformed patch sizes instead of the raw-scale patch sizes, and then back-
transform (via exponentiation) to get the random patch size for the disturbance event.  

The process above results in a fitted generalized Pareto error distribution for disturbance 
patch sizes in forested systems within each ecoregion (Table 4) and the corresponding 
fitted curves shown in figure 4. It is important to note a few things about these results. 
First, the mean overall patch size across ecoregions is only 11 cells (1 ha), although it varies 

Table 4. Generalized Pareto error models to derive the size of disturbance patches by 
ecoregion for forest ecosystems in the Northeast; N is the number of discrete disturbance 
patches and the corresponding mean, minimum and maximum patch sizes (in hectares) 
recorded in the High-Resolution Global Maps of 21st-Century Forest Cover Change 
(Hansen et al. 2013) for disturbances between 2000-2012;  Scale and Shape are parameters 
of the generalized Pareto probability density function. 

    Patch size (ha)     
Ecoregion N Mean Min Max Scale Shape 
Northern Appalachian / 
Acadian 592,943  0.99 0.09 489.87 2.093 -0.243 

St. Lawrence - Champlain 
Valley 19,699  0.50 0.09 45.00 1.927 -0.306 

North Atlantic Coast 62,072  0.55 0.09 1433.70 1.785 -0.184 
Lower New England / 
Northern Piedmont 234,951  0.52 0.09 116.91 1.801 -0.251 

Great Lakes 28,819  0.30 0.09 45.09 1.485 -0.238 

High Allegheny Plateau 99,332  0.59 0.09 235.80 1.841 -0.233 

Western Allegheny Plateau 137,508  0.54 0.09 559.71 1.678 -0.192 

Central Appalachian Forest 184,186  0.69 0.09 135.18 1.988 -0.271 

Chesapeake Bay Lowlands 88,895  1.45 0.09 308.25 2.458 -0.302 

Piedmont 201,134  2.10 0.09 282.96 2.798 -0.347 
Cumberlands And Southern 
Ridge And Valley 78,512  0.97 0.09 229.23 2.146 -0.273 

Mid-Atlantic Coastal Plain 42,704  2.42 0.09 769.95 2.913 -0.321 

Southern Blue Ridge 12,899  0.73 0.09 86.58 2.186 -0.317 
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among ecoregions from roughly 3 cells (0.27 ha) to 27 cells (2.5 ha). Second, the vast 
majority of disturbance patches are quite small; the median patch size across the region is 
only 2 cells (0.18 ha) and the 75th percentile is only 6 cells (0.54 ha) owing to the highly 
right-skewed distribution. Lastly, the patch size distribution varies somewhat among 
ecoregions, especially with respect to the size and probability of the largest disturbances.  

To create the disturbance patch once the patch size is determined, we use a resistant kernel 
from the initiation cell, as follows:  

1) create a resistance surface out of biomass and slope near the initiation cell (i.e., an 
area large enough to contain the patch). For this purpose, non-forest cells are assigned 
high resistance (sufficient to prevent any spread), while forest cells are assigned a 
resistance equal to: 

resistance = 1 + (biomassRes * deltaBiomass + deltaLog(slope+1)* slopeScaler) 

 
Figure 4. Predicted probability density of disturbance severity (defined as the 
proportional loss of above-ground live biomass, Mg/ha) by ecoregion for forest ecosystems 
in the Northeast based on the beta error models given in table 4. Note, the density gives 
the relative probability that a disturbance event will be of a particular severity, but it does 
not indicate the frequency or rate of disturbance. The relatively high probability density for 
very small proportional loss of biomass values reflects the fact the most disturbances are of 
low severity. 
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where biomassRes is a parameter that defines the increase in resistance per unit 
difference in biomass (currently=0.01); deltaBiomass is the difference between each 
cell's biomass and the initiation cell's biomass; deltaLog(slope +1) is a measure of the 
difference in slope between each cell and the initiation cell; and slopeScaler is a 
parameter that regulates the effect of slope on resistance (currently=1); 

2) build a resistant kernel by spreading outward from the initiation cell using an initial 
bank account sufficient to spread 24 times the desired patch area over a minimally 
resistant surface. The result is a kernel where the initiation cell has that bank account 
value and every other cell's value is the bank account minus the least cost path 
between the cell and the initiation cell (or 0 if the spread did not reach the cell);  

3) identify the threshold in the spread kernel height that yields the kernel size closest to 
the target patch size and slice the kernel at that threshold value to create the 
disturbance patch; and 

4) set the biomass of each cell within the disturbance patch to the previously selected 
proportion of its current biomass. 

The process above results in a disturbance patch that is confined to forested cells and has a 
shape that corresponds roughly to the spatial distribution of biomass and slope, such that 
patches tend to spread into similar aged cells on similar slopes. Note, the severity of the 
disturbance is treated as constant across the patch, which translates into a constant 
proportional reduction in the current biomass. Consequently, the final biomass preserves 
the original spatial heterogeneity in biomass within the patch even as the amount of 
biomass is reduced. This may or may not reflect real-world disturbances in all cases. 
However, in most real-world cases evidence suggests that a single disturbance event will 
typically result in heterogeneous severity, and thus we sought to maintain not reduce the 
heterogeneity within patches. 

4 Model Evaluation 
Given the stochastic nature of the disturbance-succession model, it is important to evaluate 
various outcomes of the model for adherence to our expectations. In this regard, we 
evaluated four things: 1) difference between the expected and simulated probability of 
disturbance; 2) difference between the expected and simulated severity of disturbance; 3) 
difference between the initial biomass distribution and the simulated biomass distribution 
over time; and 4) difference in the spatial configuration of biomass between the initial 
condition in 2010 and the last timestep of the simulation in 2080.  

4.1 Probability of disturbance 
If each cell was disturbed independently of all other cells, there would be no need to 
calibrate the probability of disturbance, as it would be determined exactly by the specified 
cell-level probability of disturbance given by the empirically determined model parameters. 
However, given that disturbances initiate in a focal cell and then spread to surrounding 
cells in a contagious manner, and that individual disturbance events within a single 
timestep (10 years) can overlap each other, it is necessary to evaluate the simulated or 
realized disturbance probability and if necessary adjust the cell-level probability of 
initiation to accommodate any realized bias. Overall, the calibrated probability of 
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disturbance does a reasonably good job across ecoregions of emulating the expected 
probability disturbance based on the fitted relationships from the FIA data, with a couple of 
exceptions (Fig. 5): the Southern Blue Ridge ecoregion exhibits an upward bias, whereas 
the Mid-Atlantic Coastal Plain exhibits a downward bias, both for unknown reasons. Lastly, 
the simulated relationships between probability of disturbance and biomass exhibit much 
shallower slopes than expected because of the spread of disturbance from the initiation cell 
(in which the relationship with biomass is maintained exactly) to surrounding cells that 
differ in biomass from the initiation cell. In other words, the strong biomass affect at the 

 
Figure 5. Expected (empirical) and simulated (model) probability of disturbance per 
decade (y-axis) as a function of biomass (Mg/ha, x-axis) for forest ecosystems by ecoregions 
in the Northeast. The expected values were derived by fitting a logistic function to the 
presence of disturbance and biomass data for a set of Forest Inventory and Analysis (FIA) 
plots within each ecoregion. The simulated probability of disturbance is the realized values 
after adjusting the cell-level probability of initiation to correct for the observed downward 
bias in disturbance that occurs when disturbances overlap. 
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initiation cell is weakened by forcing disturbance events to spread to surrounding cells that 
differ in biomass.   

4.2 Disturbance severity 
Because individual disturbance events within a single timestep can overlap, and we chose to 
retain the more severe disturbance where overlap occurs, the simulated or realized 
distribution of disturbance severity does not perfectly mirror the expected distribution 
based on the fitted relationships from the FIA data. Specifically, because we retained the 
more severe disturbance where overlap occurs, we realize an upward bias in the simulated 
distribution of severity (Fig. 6). Thus, we simulate fewer cells of very low severity 

 
Figure 6. Expected (red) and simulated (black) density (y-axis) of disturbance severity (x-
axis) for forest ecosystems by ecoregions in the Northeast. Note, the density gives the 
relative probability that a disturbance event will be of a particular severity and severity is 
given as the proportional reduction in biomass (i.e., severity=1 when current biomass is 
reduced to zero). The expected values were derived by fitting a beta distribution to the 
observed biomass loss between surveys for a set of Forest Inventory and Analysis (FIA) 
plots within each ecoregion. 
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disturbance and more cells of higher severity disturbance than expected based on the FIA 
data. In general, however, the upward bias is very slight in most ecoregions.  

4.3 Biomass distribution 
Simulated succession (the development of biomass) and disturbance (the loss of biomass) 
processes interact to affect the simulated distribution of biomass over time. Figure 7 
depicts the changes in the simulated biomass distribution over time (by decade) for each 
ecoregion, from which several patterns emerge.  

First, the initial (2010) biomass distribution is distinctly bimodal, with modes at very low 
biomass and moderately high biomass, and this pattern is consistent across all ecoregions, 
although it is more pronounced in some (e.g., Cumberlands and Southern Ridge and 
Valley) than others (e.g., Central Appalachian Forest). The low biomass mode is likely due 
to a combination of confounded factors. In part, this mode may reflect a real pulse of high-
severity disturbances during the past couple of decades (e.g., due to increased forest 
cutting). However, it may also reflect GIS errors in the creation of the initial biomass layer. 
Indeed, there is good evidence for the latter resulting from disagreement between the forest 
cover mask used to create the initial biomass layer (Kellndorfer et al 2013) and the forest 
cover mask used in our simulation (DSLland). Unfortunately, it is difficult to discern 
between these two possible sources for the cause of the low biomass mode.  

Second, the relative probability of very high biomass is maintained over time in the 
simulation. In other words, the simulation does not result in a notable increase in the 
proportion of very high biomass cells. 

Third, over time the simulation gradually converts the bimodal distribution in biomass to a 
unimodal distribution, with considerably more early- to mid-successional forest and an 
overall mode at moderate biomass that equates roughly to an early mature forest stand. 
However, the shifting distribution between 2010-2080 is much more pronounced in some 
ecoregions (e.g., Northern Appalachian/Acadian) than others (e.g., Piedmont). It is 
important to note that the initial bimodal distribution is impossible to maintain overtime 
without introducing periodic or intermittent surges in the proportion of high-severity 
disturbances. 

4.4 Spatial configuration of biomass 
Our final evaluation of the disturbance-succession model involves visually comparing the 
initial (2010) spatial configuration of biomass to the configuration at the end of the 
simulation (2080). We noted several patterns:  

First, we fit and then applied the probability of disturbance, disturbance severity and patch 
size distribution at the ecoregion level. However, the underlying processes driving 
disturbance are not necessarily distributed evenly throughout each ecoregion. For example,  
the Northern Appalachian/Acadian ecoregion includes the Adirondacks, the higher 
elevations and more northerly portions of Vermont and New Hampshire, and all but the 
southern tip of Maine. Much of Maine is subject to industrial forestry and an intensive 
disturbance regime while the Adirondacks and the White Mountains have much less 
anthropogenic disturbance. This is evident in the initial biomass which shows much higher 
values in the Adirondacks and White Mountains than in Maine (Fig 8). Our model then  
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Figure 7. Simulated density (y-axis) of biomass (x-axis) per decade between 2010-2080 
for forest ecosystems by ecoregions in the Northeast. Note, the density gives the relative 
probability that a cell will have a particular biomass. 
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applies the average of these two regimes everywhere, ultimately over disturbing the 
Adirondacks and under disturbing the industrial forest of Maine, and by 2080 the biomass 
is homogenized across the ecoregion (Fig. 8). In other ecoregions this issue is less evident. 
For example, in the Piedmont the initial spatial configuration of biomass largely reflects 
intensive forest management with relatively consistent management practices applied 
across relatively homogeneous forest cover, and in this situation the simulation does a 
relatively good job of emulating the spatial configuration in biomass over time (Fig. 9). 

Second, although our models for predicting the occurrence and severity of disturbances 
across all forest types with an ecoregion were statistically better than using separate models 
for each forest type, it is clear that this results in over- or under-estimating biomass in some 
forest types. For example, in the Mid-Atlantic Coastal Plain ecoregion, the universal model 
appears to overestimate biomass accumulation over time for the Pine Barrens (Fig. 10). 
Note, this is another example of the coarse-scale heterogeneity in disturbance processes 
within an ecoregion discussed above. 

Lastly, our generic disturbance model does not appear to adequately capture the spatial 
autocorrelation in disturbance probability or severity that results in very irregular 
disturbance patch shapes. Unfortunately, the real-world shape complexity of disturbance 
patches is determined by different factors affecting different disturbance processes. For 
example, ownership parcels, which are rectilinear in shape, strongly determine 
anthropogenic disturbance patches such as those produced from timber harvesting, but 
ownership parcel data is not incorporated into our model yet due to the lack of available 
regional data. 

5 Conclusions and Recommendations 
Due to limited resources, our succession and disturbance model was intended to be a 
generic model; i.e., one that would account for vegetation development (i.e., succession) 
and disturbance without considering the separate disturbance processes that affect real-
world vegetation patterns. To this end, we developed a fully empirically-based landscape 
disturbance-succession model (LDSM) that successfully meets this goal. However, after 
evaluating the model outcomes (see above), we have reached the following important 
conclusions and recommendations.  

The architecture to model fully empirically-based disturbance and succession processes is 
now developed and in implemented in the DSL LCAD (Landscape Change, Assessment and 
Design) model. Indeed, the succession model does an excellent job of capturing the 
expected development of biomass over time in the absence of disturbance, and accounts 
nicely for differences among forest types and several ecological settings variables as 
warranted by the empirical data. The stochastic disturbance model simulates individual 
disturbance events and incorporates the steps of disturbance initiation, spread and severity, 
and each step allows for geographic differences and the incorporation of ecological settings 
variables as warranted by the empirical data (although the latter was largely not supported 
on statistical grounds based on the FIA data). Thus, we are well poised to extend this model 
as described below in future phases of this project. 
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Figure 8. Initial (2010) biomass and simulated biomass in 2080 for the Northern 
Appalachian/Acadian ecoregion. 
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Figure 9. Initial (2010) biomass and simulated biomass in 2080 for the Piedmont 
ecoregion. 
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Figure 10. Initial (2010) biomass and simulated biomass in 2080 for the Pine Barrens in 
the Mid-Atlantic Coastal Plain ecoregion. 
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Unfortunately, the intentional confounding of unique disturbance processes into a single 
generic disturbance model ignores important differences among different disturbance 
processes that in the real world give rise to multi-scale spatial patterns in disturbance rate, 
severity and patch configuration. After evaluating the model outcomes, we conclude that 
the simulated spatial patterns in biomass are too unrealistic in this regard to be useful at 
this time as inputs to the focal species landscape capability models.  

Lastly, we emphasize that the modeling machinery is now in place to decouple the different 
dominant disturbance processes (e.g., wind, insects/pathogens, fire, timber harvest), but it 
will be necessary to model each process separately (allowing for interactions among 
processes) to produce realistic spatial patterns in biomass over time. Moreover, even with 
decoupled disturbance processes, the best use of the disturbance-succession model is in 
scenario analysis, for example comparing alternative future scenarios involving differences 
in disturbance rate, severity and/or spatial configuration. 

6 Alternatives Considered and Rejected 
Prior to selecting the methods described above, we considered and rejected other options, 
as follows: 

1) Complete disturbance model — Initially, once a disturbance was initiated, stand age 
and biomass were set back to zero throughout the entire disturbance patch. We 
rejected this approach for two reasons. First, it was an inaccurate representation of 
many disturbance processes in the Northeast being that most natural disturbances in 
the Northeast only partially disturb a stand and many forest management practices 
consist of partial cuts. Therefore, reducing the biomass by a proportion of the current 
biomass and setting the stand age back to a correspondingly younger age, 9 for 
example instead of zero, we felt was a better representation of actual disturbances. 
Second, by setting all disturbed areas to age zero, future age class distributions did not 
approximate the current age class distribution in which young stands are rare. 

2) No disturbance model — In this alternative, we considered two options. The first was 
not to model disturbance at all and let stands grow over time. This resulted in all 
forests reaching considerably old age classes with essentially no early to mid-
succession classes. We deemed that this alternative resulted in a completely 
unrealistic representation of the landscape and thus rejected it. The second approach 
was not to model disturbance explicitly, but to keep the current biomass (and age) 
distribution as represented in the current landscape condition static over time. This 
approach maintained the current biomass/age class distribution, a goal we achieve in 
our preferred approach; however it completely omitted the dynamic nature of the 
landscape and thus we rejected this approach. 

3) FVS growth model — We originally considered using FVS (Forest Vegetation 
Simulator) to develop growth trajectories. FVS is an individual tree-based forest 
growth simulator that deterministically grows forests at the stand level. Our original 
consideration was to grow each FIA plot, indexed by ecological system, for 100 years 
using FVS. The result of the simulation would be a data point for each FIA stand every 
10 years for 100 years for each of the forest characteristics of interested such as 
biomass. We would then use these data as the dependant variable in the nonlinear 
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least squares regression to develop growth trajectories. Upon extensive exploration of 
this alternative, it was rejected because FVS consistently produced unrealistic growth 
trajectories for older forest stands for which growth was expected to have levelled off. 
This appeared to be caused by relatively high numbers of seedlings given stand age, 
particularly for plots located in ME. The cause of the high seedling counts given age 
may have two potential sources: 

a) Difficulty in accurately estimating stand age on FIA plots may have led to stands of 
a primarily young age being aged as relatively old stands. FIA defines the age of a 
stand as the weighted average age of two or three dominant or codominant trees in 
the overstory (Smith 2002). Therefore, a stand which may primarily be in an early 
successional stage with just a few old trees would be given an age reflective of the 
few older trees in the stand.  

b) Although an FIA plot may be classified as forested and stocked, it's possible that 
the proportion of the plot stocked is quite low (i.e., one or more of the subplots 
may not be forested). This could have been causing expansion errors when FVS 
expanded the data to a per acre basis. Much of this insight was derived from a 
discussion with Dr. Coeli Hoover, Research Ecologist, USFS, Northern Research 
Station, Durham, NH.  

Although FVS is an individual tree-based growth model, it functions (i.e., accepts and 
reports data) at the stand level and is typically used to understand the implications of 
a particular harvest on an individual stand. For this reason, making specific 
adjustments, at the stand level, within FVS is quite common to derive realistic results. 
Since we were considering >1,000 FIA plots in our analysis, refinement at the plot 
level was unrealistic and we ultimately decided that using the raw FIA plot data 
provides us with the most accurate representation of stand development.   

4) LANDFIRE state-based transition model — We also briefly considered using state-
based transition (or simply "state transition") models to model succession, based on 
models developed for the LANDFIRE project (www.landfire.gov). Briefly, state 
transition models, such as those developed for LANDFIRE, identify discrete states of 
development for each ecological system (or biophysical setting) and pathways by 
which states transition over time from one state to another either in the absence of 
disturbance or following particular disturbances. These models are typically 
constructed and parameterized based on expert opinion and often vary dramatically in 
detail by region and development team. These models have the advantage of being 
intuitive and simple to understand, as ecologists and managers often conceive of 
vegetation development as a progression through discrete stages — a somewhat 
dogmatic perspective that has been facilitated by many seminal publications on 
vegetation development. The use of existing state transition models for the ecological 
systems within the NALCC has the additional practical advantage that the work has 
largely been done by the LANDFIRE project. However, the use of discrete state 
transition models has the disadvantage of producing potentially artificially abrupt 
changes in the state of vegetation and thus in the seral stage distribution of the 
landscape. Moreover, most ecologists recognize that vegetation development is in fact 
a continuous process and that discretizing the process, while having great heuristic 
value, is perhaps not the best way to represent vegetation development in a model 
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when empirical data allow otherwise. Lastly, it is our intent in the project to 
empirically base as much of the model processes as possible given extant data. In this 
case, we believed that the FIA data allowed us to develop an empirically based 
approach to modeling continuous vegetation development and, by so doing, eliminate 
the subjectivity of the expert based state transition modeling approach. 

7 Major Risks and Dependencies 
The succession and disturbance model is empirically based and thus reliant on the 
availability and sufficiency of relevant extant data. In this regard, our model is heavily 
reliant on FIA data, which is used to model the growth in biomass (succession) by forest 
type (macrogroup) in addition to the probability of disturbance initiation and severity by 
ecoregion. Errors in the FIA data introduce "noise" to the statistical relationship being 
evaluated and make it more challenging to accurately model the process being considered. 
For example, we found no statistical support for including forest type in the models of 
disturbance probability and severity, but this may have been due to the excessive noise-to-
signal ratio in the FIA data rather than the absence of a true real-world relationship. In 
addition, the limited number of FIA plots in some forest types (e.g., Table 1) makes it 
difficult to model relationships for forest types separately, again weakening our ability to 
model real-world spatial patterns. Nevertheless, FIA is the only rigorous, regionally 
consistent assessment of forest structural characteristics available. 

Similarly, as noted previously, our estimate of disturbance patch size distributions by 
ecoregion was derived from the High-Resolution Global Maps of 21st-Century Forest Cover 
Change (Hansen et al. 2013). Unfortunately, the Hansen et al data represent high-severity 
disturbances resulting in nearly complete forest loss, but we are applying it to all 
disturbances of any severity. This was necessary because there is no empirical dataset of 
partial forest loss.  

It should be noted again that the current disturbance model was intentionally a generic 
disturbance model and thus did not explicitly model specific disturbance processes. Our 
intention was to implement a reasonable disturbance model that resulted in a relatively 
realistic representation of the landscape, i.e., maintaining the current stand age distribution 
over time. Unfortunately, our evaluation of the current model results suggest that it is 
necessary to model different disturbance processes separately to obtain realistic and thus 
useful results.  
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