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1 Problem Statement 
To assess the capability of the landscape to support sustainable wildlife populations under 
various climate change and urban growth scenarios (as well as several other ecosystem 
drivers in subsequent project phases), reliable and informative species' climate niche and 
habitat capability models must be developed for a suite of representative species. A species-
based approach to assessing the overall resiliency of the landscape to anthropogenic 
alterations, such as species' climate-habitat models, complements the coarse-filtered 
ecosystem-based assessment provided by the ecological integrity analysis as described in 
the ecological integrity document (McGarigal et al 2017), under the auspices of the 
Designing Sustainable Landscapes (DSL) project.  

2 Solution Statement 
We develop species' climate niche models, habitat capability models, and prevalence 
models and combine these into a single landscape capability model for a suite of 
representative species to assess the capability of the Northeast Region to sustain a suite of 
identified conservation priority species under future landscape change scenarios.  

First, we use logistic regression methods to build species' Climate Niche (CN) models from 
downscaled climate data and independent species' occurrence data (e.g., Breeding Bird 
Survey) for the period 1985-2010. These models predict the probability of occurrence of 
each species based on their current geographic distribution in relation to several climate 
variables based on data representing the past 30 years. In the context of the Landscape 
Change, Assessment and Design (LCAD) model, we use these fitted models to predict the 
future distribution of the species' climate niche under alternative climate change scenarios. 
Importantly, we use these predictions to determine where the species might occur if they 
are able to immediately redistribute to remain within their current climate niche envelope 
(CNE), but they are not meant to predict where the species will actually occur because of 
our uncertainty in the species' ability to geographically track climate and the potentially 
limiting role of future habitat changes independent of climate, as well as time lags in 
habitat response to climate change. The result of the climate niche modeling is a map 
depicting the relative probability of occurrence (scaled 0-1) of each species at each time step 
under each climate change scenario based on the species' current climate niche. In 
addition, we convert the continuous relative probability of occurrence surface into a binary 
map representing the species' CNE by thresholding the probability surface to achieve the 
lowest commission (false positive) error rate (i.e., proportion of observed absences wrongly 
predicted to be present) given a specified model sensitivity of either 95%, 97.5% or 99% 
(i.e., percentage of observed occurrences correctly predicted to be present) based on 
empirical presence/absence data. Lastly, we summarize these results across climate change 
scenarios to reflect the uncertainty in future climate changes. 

Second, we use the program HABIT@, a spatially explicit, GIS-based wildlife habitat 
modeling framework developed in the UMass Landscape Ecology Lab, to build species' 
habitat capability models. These models produce an index of habitat capability that we refer 
to as the Habitat Capability (HC) index for each species based on the condition of the 
landscape in relation to a suite of environmental variables. In the context of the LCAD 
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model, we use these HABIT@ models to predict the future habitat capability of the 
landscape under alternative land use (e.g., urban growth) scenarios. Importantly, we use 
these predictions to determine where the species might occur if they are able to 
immediately redistribute to track suitable habitat conditions, but they are not meant to 
predict where the species will actually occur because of our uncertainty in the species' 
ability to geographically track habitat changes and the potentially limiting role of future 
climate independent of habitat. The result of the HABIT@ modeling is a map depicting the 
HC index (scaled 0-1) for each species at each time step under each landscape change 
scenario. Lastly, we summarize these results across landscape change simulations to reflect 
the uncertainty in future landscape changes. 

Third, we use kernel density estimators to build species' Prevalence models based on 
species' occurrence data (e.g., Breeding Bird Survey). These models predict the species' 
current distribution based solely on the species' observed spatial distribution independent 
of any explanatory variables and are intended to capture biogeographic factors influencing 
species' distributions that are not accounted for by the climate niche and habitat capability 
models. In the context of the LCAD model, we use these prevalence models to regulate the 
species' predicted probability of occurrence (see below) separately from that of climate and 
habitat. This is particularly important in some species' distributions where prevalence is 
less than would be expected based solely on climate suitability and habitat capability, 
presumably due to other biogeographic factors such as interspecific interactions and 
disease that we cannot measure directly. The result of the prevalence modeling is a map 
depicting the relative prevalence (0-1, although distributed as an integer grid scaled 0-100) 
of each species under the current landscape conditions. 

Fourth, we synthesize the previous results for each species into a composite Landscape 
Capability (LC) index at each time step for each landscape change simulation. Specifically, 
we combine the species' CN, HC and Prevalence into a single index (LC) scaled 0-1 and use 
logistic regression to evaluate the predictive ability of the model based on independent 
species' occurrence data (e.g., eBird). Importantly, the LC models provide an index of 
species occurrence, not the true probability of occurrence.  In the context of the LCAD 
model, we use the intersection of a species' LC map at any future timestep in relation to the 
initial or baseline condition in 2010 as the basis for summarizing the potential impacts of 
habitat and climate changes on a species. The result of the landscape capability modeling is 
a map depicting an index of occurrence for each species at each time step under each 
landscape change scenario. 

Lastly, we assess the potential impacts of habitat and climate changes on each species using 
a variety of non-spatial and spatial indices. First, we compute a complementary set of non-
spatial indices for each species based on the proportional change in LC due to climate 
change, habitat change, or both within the specified geographic extent. These non-spatial 
indices are primarily useful for establishing conservation objectives or targets for species in 
conservation design or for comparison among landscape change scenarios. The 
vulnerability indices are computed for each landscape change simulation based on the 
2080 predictions and summarized as the mean across simulations.  

Second, we derive a variety of spatial indices representing the species' potential response to 
climate change, habitat change or both based on changes in LC under different assumptions 
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or for different purposes. These spatial indices are useful for prioritizing locations for 
conservation action for each species in the context of landscape conservation design and for 
visualizing the potential changes in the distribution of a species due to climate change, 
habitat change or the combination of the two. These spatial indices are computed for each 
landscape change simulation based on the 2080 predictions only (for parsimony sake) and 
summarized as the mean across simulations, and to facilitate their use in landscape 
conservation design each of these spatial indices is quantile-scaled within the project area.  

3 Detailed Description of Process 
Our species-based approach for evaluating the Region's capability to sustain priority 
wildlife species under future landscape change scenarios involves six major steps: 1) 
selecting a suite of representative species, 2) developing a climate-niche model for each 
species, 3) developing a habitat capability model for each species, 4) developing a 
prevalence model for each species, and 5) combining the results of the climate, habitat, and 
prevalence models into a landscape capability model for each species at each time step 
under each landscape change scenario to quantify uncertainty in the predictions of species 
occurrence, and 6) computing the non-spatial and spatial landscape change indices for each 
species. Each of these steps are described in this section. However, this section is intended 
to provide a general overview of the process; a description the landscape capability model 
for each focal species is provided in separate documents (Appendix A).  

3.1 Representative Species 
The first step involves selecting species for modeling. Importantly, we developed a 
modeling framework for assessing landscape capability for any focal species regardless of 
the purpose of the selected species. For example, individual species models can be 
developed for representative species, indicator species, threatened and endangered species, 
vulnerable species, flagship species, game species or any other species of conservation 
interest. Currently, we are focusing on developing models for a suite of representative 
species under the assumption that these relatively few species serve as surrogates for the 
much large suite of conservation priority species. 

In a separate project led by UMass and directed by the U.S. Fish and Wildlife Service 
(USFWS), we selected a total of 87 terrestrial species to represent clusters of similar 
terrestrial ecological systems within the NALCC (NALCC 2011). For the first phase of this 
project, we selected a subset of 10 of these representative species for landscape capability 
modeling. For this purpose, a tiered approach was developed by Scott Schwenk at the 
University of Vermont (currently with USFWS and director of science for the NALCC) to 
prioritize species. Species listed in Tier 1 received the highest priority during phase 1. An 
additional 20 species were selected from this tiered list for modeling in the second phase of 
this project. Species assignments to tiers were based on both ecological and feasibility 
criteria. In general, Tier 1 species: 1) represent habitat clusters that account for large 
portions of the NALCC; 2) are sensitive to anthropogenic disturbances; 3) are relatively well 
understood; and 4) are cases for which the required environmental data are readily 
obtainable. The final suite of species modeled in phase 1 and phase 2 are listed in Table 1. 
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It is important to remember that each representative species selected for modeling is 
presumed to function as a representative for a much larger suite of priority species 
associated with a cluster of ecological systems. The species assemblages and ecological 
system clusters represented by each species are documented separately (see 
http://www.fws.gov/northeast/science/representative_species.html). 

3.2 Climate Niche Model 
The next step is to develop a Climate Niche (CN) model for each selected representative 
species. Briefly, a CN model represents a species' apparent range of tolerance to climate 
variability based on the species' current distribution and the current climate. In the context 
of the LCAD model, we use the species' CN to predict the future distribution of the species' 
climate niche under alternative climate change scenarios. Importantly, these predictions 
are used to determine where suitable climate conditions will exist based on current climate 
associations, not where they will actually occur, since the latter depends on whether they 
can and choose to get there from currently occupied sites. A general description of the CN 
modeling approach follows and is illustrated using results for wood thrush. The process  

Table 1. List of 30 representative species modeled for the Northeast region.  B=breeding 
season; NB=nonbreeding season; A=all year; M=migratory.  
Species Species 

American black duck (B) Marsh wren (B) 

American black duck (NB)  Moose (A) 

American oystercatcher (B) Northern Waterthrush (B) 

American woodcock (B) Ovenbird (B) 

Bicknell's thrush (B) Prairie warbler (B) 

Black bear (A) Red-shouldered hawk (B) 

Blackburnian warbler (B) Ruffed grouse (B) 

Blackpoll warbler (B) Saltmarsh sparrow (B) 

Box turtle (A) Sanderling (M) 

Brown-headed nuthatch (B) Snowshoe hare (A) 

Cerulean warbler (B) Snowy egret (B) 

Common loon (B) Virginia rail (B) 

Diamondback terrapin (A) Wood duck (B) 

Eastern meadowlark (B) Wood thrush (B) 

Louisiana Waterthrush (B) Wood turtle (A) 

 
  

http://www.fws.gov/northeast/science/representative_species.html
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Figure 1. Geographic extent of the assessment area used to develop and apply species' 
climate niche models. Specifically, empirical observations of species' presence and absence 
are limited to Bailey’s Humid Temperate Domain within the US (shaded blue area). The 
lines shown here depict the Breeding Bird Survey routes within this extent that are 
potentially available for inclusion in species' climate niche models. 
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described next is the same for all species, even though some of the details, such as sources 
of empirical data, vary slightly among species. 

First, we define the geographic extent for compiling climate and species' occurrence data as 
the Humid Temperate Domain (sensu Bailey et al. 1994) within the U.S. (Fig. 1). We 
restricted our geographic extent to the U.S. because most of the extant data used for model 
building (e.g., Breeding Bird Survey, eBird, Mountain Birdwatch) is limited to the U.S. We 
limited the geographic extent to the Humid Temperate Domain in order to limit the 
distance between absent and present data in geographic and climatic space which, if 
ignored, can lead to high rates of model commission errors (Lobo et al. 2010). By doing so, 
we avoid situations where relatively similar but spatially distant climate conditions are 
included in models as both suitable (based on presence locations) and unsuitable (based on 
absence locations). For example, wood thrush are abundant in the seasonable, wet climate 
of the Great Smokey Mountains. A model restricted to the Humid Temperate Domain 
would likely capture this signal. However, a model that considered the entire U.S. would 
identify the seasonable, wet conditions of the Pacific Northwest (well outside of the range of 
wood thrush) as unsuitable (due to lack of occurrences) and thus the wood thrush’s 
propensity for seasonable, wet climate conditions in the eastern U.S. might not be 
identified by the model. Conversely, the geographic extent must also provide enough 
geographic range to capture locations where individuals are absent due to unfavourable 
climatic conditions, as opposed to absences solely due to ecological constraints, such as 
competition or dispersal limitations (Lobo et al. 2010). Lastly, the geographic extent must 
also include climate variation beyond that found in the project area (Northeast) to account 
for future climate changes within the project area. In particular, the geographic extent must 
extend south and west far enough to include current climate conditions that are likely to be 
found within the project area over the next 70 years. Given all of these considerations, we 
consider the Humid Temperate Domain within the U.S. to be a reasonable compromise. 

Second, we identify a suite of climate variables that we deem, a priori, important in 
defining a species’ climate niche based on a review of the literature (e.g., Lawler et al. 2009, 
Wiens et al. 2009, Matthews et al. 2011) and availability of data (see technical document on 
climate, McGarigal et al 2017, for details) . For the species considered thus far, these 
climate variables include: 

1) Average annual precipitation (precip) 
2) Growing season precipitation (precipgs) 
3) Average annual temperature (temp) 
4) Average minimum winter temperature (tmin) 
5) Average maximum summer temperature (tmax) 
6) Growing degree days (gdd) 
7) Heat index 35 (heat35) 

Values for 2010 are derived from the Parameter-elevation Relationships on Independent 
Slopes Model (PRISM) dataset developed by Oregon State University with support from the 
U.S. Department of Agriculture through the Natural Resources Conservation Service 
(USDA-NRCS). This model uses a weighted climate-elevation regression approach to model 
the temperature and precipitation in each digital elevation model (DEM) grid cell. To 
develop the regression model in each cell, the model considers the most similar of 10,000 
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and 13,000 stations (for temperature and precipitation, respectively) in physiographic 
space, including the factors: location, elevation, coastal proximity, aspect, vertical 
atmospheric layer, topographic position, and orographic effects. The PRISM data are 
available as 30-year normal grids of the entire U.S. consisting of 800m cells with monthly 
average precipitation and monthly average minimum and maximum temperatures 
averaged across the years 1985 – 2010. Given these baseline values, we develop future 
projections of these climate variables based on the World Climate Research 
Programme's (WCRP's) Coupled Model Intercomparison Project phase 5 (CMIP5) multi-
model dataset. Briefly, we process the output from 14 Atmospheric-Ocean General 
Circulation Models (AOGCMs) downscaled to 12 km using the Bias Corrected Spatial 
Disaggregation (BCSD) downscaling approach to create an ensemble average AOGCM 
projection under each of 2 Representative Concentration Pathways (RCP) scenarios 
(RCP4.5 and RCP8.5)(see technical document on climate, McGarigal et al 2017, for details). 

Third, we compile an independent data set on species occurrence within the assessment 
area. Our goal is to consistently use Breeding Bird Survey (BBS) data 
(https://www.pwrc.usgs.gov/bbs/) to develop climate niche models for bird species. 
However, in the event that BBS data does not provide adequate samples, for example with 
non-avian species, habitats that are not adequately sampled (e.g., salt marsh) or avian 
species with very restricted distributions, we augment this dataset with other existing data 
as needed and deemed appropriate (e.g., Mountain Birdwatch, MBW, data). Note, for some 
bird species BBS data alone or in combination with these supplementary datasets was not 
adequate to develop CN models. For these species, we use the eBird data described below 
under model evaluation to develop the CN model. Unfortunately this precludes eBird as a 
source of data for evaluation for these species, as discussed below. 

BBS data is maintained by the US Geological Survey's Patuxent Wildlife Research Center. 
For suitable species, we summarize the BBS data as follows: 

1) We use data from 1990 – 2010, as this time period matches the PRISM data and is 
likely to reflect the current range of climatic conditions a species occupies. 

2) Based on the recorded detections, we consider the presence/absence of each species 
within each survey route segment (~8 km road length containing 10 point counts), not 
the total count. We compute the proportion of years in which each species was present 
on each segment. Note, because BBS does not maintain segment-level spatial data, we 
divide each 40 km route into five equal segments and use the starting location to order 
each segment.    

Fourth, we use multiple logistic regression to predict the response as a function of the suite 
of climate variables, with the following modeling considerations: 1) we treat each BBS route 
segment as an independent observation and make no attempt to account for residual 
spatial autocorrelation as it is not deemed relevant given our modeling purpose, 2) we 
assume a binomial error distribution for the proportional response and treat the number of 
survey years at a segment as the trial size, 3) we do not account for imperfect detection of 
species in the model as it is not feasible given the sampling design (without violating 
important assumptions) and is not deemed essential given our modeling purpose, and 4) 
we consider quadratic terms for each of the predictors to account for nonlinear 

https://www.pwrc.usgs.gov/bbs/
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relationships (in the logit of the response). We conduct an all subsets logistic regression on 
the climate predictors that evaluates every combination of climate predictors (in linear and 
quadratic form). To select the best model, we consider models that minimize prediction 
errors of commission (false positives) given a specified model sensitivity of 95%, 97.5% and 
99% (depending on species). Model sensitivity is the proportion of "present" observations 
that are correctly predicted to be "present" (the complement of sensitivity is the omission 
error rate). We consider sensitivity levels of 95-99% because we want a prediction envelope 
that captures most of the species' observed distribution (i.e., a "present" envelope), but one 
that is not influenced by the most extreme observations. Given a particular model 
sensitivity, we seek to minimize the commission error (or false positive) rate; i.e., the model 
that results in the fewest "absent" observations incorrectly predicted to be "present". Note, 
the regression model predicts the relative probability of occurrence for each observation; a 
cutpoint or threshold value on the response scale (i.e., probability scale) must be selected in 
order to classify observations as "present" or "absent". In our case, we select the model with 
the lowest AIC value (goodness-of-fit criterion) within a delta false positive rate of 0.1 (i.e., 
within 10% of the best model's false positive rate). We consider this approach as a method 
to simultaneously minimize errors of commission while maintaining model parsimony, 
ensuring that of the models that do the best job of minimizing false positive rates, we select 
the most parsimonious possibility. This model selection procedure is similar to the 
conventional approach based on minimizing a goodness-of-fit criterion such as AIC, but 
here our goodness-of-fit criterion is first based on commission error given a specified 
model sensitivity. Lastly, we consider the range extent of the CNE derived from the "best" 
model at each sensitivity level (95%, 97.5%, and 99%) and select the model (or sensitivity 
level) that defines a CNE that best approximates the species’ current geographic range and 
extent as defined by various sources such as breeding bird atlases 
(http://www.pwrc.usgs.gov/bba/index.cfm?fa=bba.MapViewer), eBird data, and the 
species published range (Poole 2008). 

The approach described above results in a fitted logistic regression model (i.e., parameter 
estimates), which we use to define the species' CN, and a cutpoint on the response scale, 
which we use to define the species' CNE. Based on this model, we generate the following 
spatial results: 

1) Climate niche (speciesCN) — map depicting each species' relative probability of 
climate suitability based on the climate in 2010 (Fig. 2a). Note, these maps depict 
climate suitability as a continuous surface scaled 0-1 . A binary map depicting areas 
"inside" versus "outside" each species' CNE based on the climate in 2010 is not 
distributed but can be derived by thresholding the continuous probability surface at 
the specified cutpoint (e.g., Fig. 2b). 

2) Future climate niche (speciesCN2080) — map depicting each species' relative 
probability of climate suitability based on the predicted climate in 2080 under the 
RPC 4.5 and 8.5 climate change scenarios. Note, these maps depict climate suitability 
as a continuous surface scaled 0-1 and are averaged across climate scenarios for the 
distributed product. A binary map depicting areas "inside" versus "outside" each 
species' CNE based on the predicted climate in 2080 averaged across the RPC 4.5 and 

http://www.pwrc.usgs.gov/bba/index.cfm?fa=bba.MapViewer
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8.5 climate change scenarios is not distributed but can be derived by thresholding the 
continuous probability surface at the specified cutpoint. 

3) Climate zones (speciesCZ2080) — maps derived by intersecting a species' current and 
future CNE (averaged across RPC 4.5 and 8.5 climate change scenarios) to delineate 
three distinct zones of uncertainty in the predicted future distribution of a species 
based on climate suitability: 1) Zone of Persistence - overlap of the current and future 
CNE; thus where we have high confidence in the species' predicted future occurrence; 
2) Zone of Contraction - current CNE outside of the future CNE; where the future 
climate is no longer suitable and thus where we have lower confidence in the species' 
predicted future occurrence due to unknown population time lags and other factors; 3) 
Zone of Expansion - future CNE outside of the current CNE; where the future climate 
becomes suitable but is not currently suitable and thus where we have lower 
confidence in the species' predicted future occurrence due to unknown population 
time lags and other factors (Fig. 3). Note, these climate zones are used to derive some 
of the landscape change indices (described below). 

  
Figure 2. Example of a species' Climate Niche (CN) index, expressed as a continuous 
relative probability of climate suitability surface, and corresponding Climate Niche 
Envelope (CNE), derived by thresholding the CN index at the cutpoint that minimizes the 
commission error rate (false positives) given a specificity (true positives) rate of 95-99%,  
expressed as a binary map of where the species' is most likely to occur (black) based on 
climate suitability; shown here for the blackburnian warbler in the Northeast in 2010. 
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In addition, we generate the following non-spatial results: 

1) Climate niche (ha) — sum of CN in 2010 multiplied by 0.09 to convert it to maximum 
CN-equivalent hectares; it ranges from 0 (no suitable climate) to the study area extent 
in hectares (when the entire study area is all optimal climate). 

2) Percent change in climate niche — sum of future CN in 2030 or 2080 (averaged 
across the RCP 4.5 and 8.5 climate change scenarios) minus the sum of CN in 2010, 
divided by the sum of CN in 2010, multiplied by 100 to convert to a percentage; it 
ranges from -100 with the complete loss of suitable climate and is unbounded on the 
upper end. Values <0 reflect shrinking CN whereas values >0 reflect expanding CN 
within the project area (Table 2).    

 

  

  
Figure 3. Climate Zones in a species' response to climate change, derived by intersecting 
the species' current Climate Niche Envelope(CNE) and mean future CNE (averaged across 
climate change scenarios in 2080), including: 1) zone of persistence, where the current and 
future CNE overlap, 2) zone of contraction, where the current CNE does not overlap the 
future CNE, and 3) zone of expansion, where the future CNE does not overlap the current 
CNE. Shown here for blackburnian warbler and eastern meadowlark in the Northeast.  
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3.2.1 CN model evaluation 

To assess CN model performance, we conduct a Monte Carlo randomization test of the 
model commission error rate. Specifically, for the final logistic regression model, we 
compute the observed commission error rate (i.e., false positive error rate) and compare it 
to the distribution of commission error rates under the null distribution. The null 
distribution represents the distribution of commission error rates expected if the species' 
occurrences are distributed randomly with respect to climate (i.e., climate has no real 
relationship to their distribution). We generate the null distribution by randomly shuffling 
the "present" and "absent" among the sample locations and then recomputing the 
commission error rate given the corresponding sensitivity level (95%, 97.5% or 99%) 
selected for the species, and repeating this process 1,000 times to generate a distribution of 
values. We expect the original model to have a smaller commission error rate than the bulk 

Table 2. Example species' Climate Niche (CN) index in the Northeast region in 2010 and 
Climate Change indices for 2030 and 2080. The CN index is computed as the sum of the 
CN values across the landscape, reported in hectares, where the CN values represent the 
probability of suitable climate (see text for details) based on a model built from the species' 
known distribution in 2010. Statistics reported for 2030 and 2080 represent the 
percentage change relative to the CN index in 2010 averaged across two climate scenarios 
(RCP 4.5 and 8.5); 0 represents no change in CN. 

 Climate Niche (ha) Percent change in 
Climate Niche 

Species 2010 2030 2080 

American woodcock 1,132,751,220 -1.6 -8.2 

Blackburnian warbler 914,694,418 -24.4 -71.3 

Blackpoll warbler 123,144,883 -48.6 -87.6 

Eastern meadowlark 664,094,840 22.3 68.2 

Louisiana waterthrush 231,888,468 25.0 102.3 

Marsh wren 807,983,242 13.8 62.1 

Moose 1,254,750,734 -9.2 -10.4 

Northern waterthrush 707,764,917 -30.3 -68.4 

Prairie warbler 163,586,333 30.4 122.6 

Ruffed grouse 1,199,451,492 -15.4 -62.1 
Wood duck 432,906,109 10.6 30.6 
Wood thrush 1,458,459,115 -0.1 -0.1 
Wood turtle 1,126,357,571 6.7 7.6 
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of the null distribution if the 
species' distribution is nonrandom 
with respect to climate, therefore 
we compute the lower (one-sided) 
p-value as the proportion of the 
null distribution less than or equal 
to the observed commission error 
rate (Fig. 4). We interpret a 
significant difference (i.e., p-value 
≤ 0.05) as confirmation of the 
reliability of the CN model.  

3.3 Habitat Capability 
Model 

After describing the key habitat 
requirements for a representative 
species (based on extensive 
literature review and consultations 
with experts), we model the 
quantity, quality and accessibility 
(i.e., capability) of habitat across 
the landscape at each time step 
under each landscape change 
simulation with HABIT@. Note, 
we use the term "habitat 
capability" instead of "habitat 
suitability" to distinguish our 
approach from conventional Habitat Suitability Index (HSI) modeling. In particular, our 
approach involves assessing not only the quantity and quality of habitat, typical of 
conventional habitat suitability models, but also the accessibility of quality habitat, which is 
unique to our approach. In the context of the LCAD model, we use HABIT@ to predict the 
future distribution of the species' habitat capability under alternative climate change and 
land use scenarios. Importantly, we use these predictions to determine where the species 
might occur based on their habitat requirements, not where they will actually occur, since 
the latter will depend on whether they can and choose to get there from currently occupied 
sites. A general description of the HABIT@ modeling framework follows; details of the 
HABIT@ models for each species are included in Appendix A. 

HABIT@ is a multi-scale GIS-based system for modeling wildlife habitat capability 
developed by Brad Compton and Kevin McGarigal in the UMass Landscape Ecology Lab. 
Habitat capability refers to the ability of the environment to provide the local resources 
(e.g., food, cover, nest sites) needed for survival and reproduction in sufficient quantity, 
quality and accessibility to meet the life history requirements of individuals and local 
populations. Rather than being focused on a particular species or ecosystem, HABIT@ is 
intended to be general enough to model any animal (or perhaps plant) species. Species 

 
Figure 4. Monte Carlo randomization test (1,000 
replications) of the observed commission error rate, 
given a model sensitivity of 95%, for the logistic 
regression model predicting species' presence from a 
suite of climate variables that minimized commission 
error at the specified model sensitivity; shown here for 
the wood thrush based on Breeding Bird Survey. The 
null distribution of commission error rates is given by 
the frequency distribution, while the observed 
commission error is shown as a vertical dashed line. 
The p-value (<0.001) is computed as the proportion of 
the null distribution less than or equal to the observed 
commission error. Shown here for the blackburnian 
warbler in the Northeast. 
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models are typically developed directly by biologists with the best understanding of the 
species being modeled, without a lot of GIS or computer experience, although technical 
assistance is generally required to implement the models. HABIT@ was developed using 
the programming language APL, but is currently implemented using the HABIT@ scripting 
language.  

HABIT@ models are static — HABIT@ does not model population dynamics nor 
population viability. Like an HSI model, the results are relative measures of habitat 
capability—they do not necessarily correspond to animal density or fitness. HABIT@ is not 
an individual-based model, and it does not explicitly model animal movement (although 
movement can be accounted for implicitly). HABIT@ models are, of course, limited by the 
availability, scale, and accuracy of available data, and the applicability of these data to the 
species being modeled. As with all habitat modeling, the greatest limitation is usually our 
lack of knowledge of the habitat requirements of the species being modeled. HABIT@ 
models are only as good as the biological information used to build them. 

HABIT@ is spatially-explicit — the habitat capability value at each cell is dependent not 
only on the resources available at that cell, but on resources available in the neighborhood 
(e.g., is there enough forage to support an individual’s homerange?), on the configuration of 
resources (e.g., are they juxtaposed or contiguous?), on impediments to movement (e.g., 
are food and nesting resources across an impassable road from each other?), and/or on the 
density of roads or development in the neighborhood. The models can be as complex as the 
biological understanding warrants and the available GIS data permit.  

HABIT@ models are based on GIS grids representing environmental variables such as 
cover type, stand age, canopy density, slope, hydrological regime, as well as roads and 
development. Input grids can represent anything pertinent to the species being modeled, 
depending only upon the availability of data. Complex derived grids representing 
specialized environmental variables (such as stream channel constraints, cliffs suitable for 
nesting, or rainfall patterns) can be incorporated in HABIT@ models as well. Grids can be 
at any scale appropriate to the species being modeled, subject to data availability. GIS data 
that are available in a vector format can easily be converted to grids at an appropriate scale. 

HABIT@ models consider habitat at two levels of organization (Fig. 5):  

1) Local Resource Capability (LRC) — the availability of resources important to the 
species’ life history, such as food, cover, or nesting, at the local, finest scale (a single 
grid cell or pixel); resources include factors influencing survival (e.g., food, thermal 
protection) and/or reproduction (e.g., nest substrate, protection from predators). 
Importantly, local resource availability is a function of both the ecological composition 
of the focal cell (i.e., cover type) and its spatial context (e.g., proximity to landscape 
features), but it is fundamentally an attribute of a focal cell and not a characterization 
of the landscape (or local neighborhood) surrounding the cell. A HABIT@ model 
consists of one or more local resources (e.g., cover, food, nesting) and the availability 
of each local resource is measured using one or more local resource indices that 
essentially translate environmental data (e.g., land cover) into 0-1 indices that can be 
combined into a composite LRC index for each resource.   
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2) Habitat Capability (HC) — the capability of an area corresponding to an individual’s 
homerange to support an individual, based on the quantity, quality and accessibility of 
local resources; habitat capability is a function of the amount and accessibility of high-
quality local resources in the neighborhood of the focal cell; it is fundamentally an 
attribute of the local neighborhood and not the focal cell, even though the assessed 
value is returned to the focal cell. Note, an HC model can also include a coarse-scale 
consideration of habitat extent beyond the scale of a single homerange, for example 
based on the quantity, quality and accessibility of habitat within a much larger 
neighborhood of the focal cell corresponding to some multiple of the average 
homerange size. The coarse-scale extent of habitat often influences local population 
sizes and thus can influence the availability of mates at the local scale. If mate 
availability is viewed as a local resource (albeit a conceptual stretch), we can at least 
partially incorporate coarse-scale population level considerations into the derivation 
of HC. Thus, an isolated homerange of high habitat quality can receive a lower score 
than an area containing multiple homeranges of high quality. 

 
Figure 5. Schematic outline of the hierarchical structure of HABIT@ models. 
Environmental variables represented as GIS layers are converted into local resource 
indices, which are combined to represent the availability of one or more local resources 
(e.g., cover, forage). The quantity, quality and accessibility of local resources within a 
potential home range centered on a focal cell determines the Habitat Capability (HC) of 
each focal cell. Note, the extent of suitable habitat within a neighborhood extending over 
multiple home ranges is incorporated directly into the calculation of HC to partially account 
for population-level considerations. 
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Like an HSI model, HABIT@ returns a value between 0 (no habitat value) and 1 (prime 
habitat) for each cell at each level of the model. At the local resource level, the cell LRC 
value indicates the resource value at that cell (e.g., value as nesting habitat or forage) and 
there is a separate value for each designated local resource (which varies among species), 
although these grids are stored only as interim products. At the homerange level, the cell 
HC value indicates the relative value of a potential homerange centered on that cell with 
consideration of its broader neighborhood context. Note, HC values are continuous across 
the landscape, thus no assumptions are made as to where individual homeranges would 
actually be placed (Fig. 6).  

Importantly, HC is not an estimate of occupancy or any specific population parameter 
(e.g., survival, productivity), since the latter depend on many other factors besides habitat 
(e.g., demographics). Rather, HC is an index of habitat capability that should vary with 
individual and population performance to the extent that habitat drives the latter. Thus, an 
index of say 0.8 at one location indicates that habitat conditions in the neighborhood of 
that location are estimated to be twice as good as another location that has an index of 0.4. 
In addition, HC is a species-specific index. HC absolute values are not appropriate for 
comparison across species due to differences in the underlying species' models; instead, HC 
values are best used within a species to compare over time or among landscape change 
scenarios. 

In the context of the LCAD model, we generate a map of HC for each species in 2010, and 
an average across landscape change simulations in 2080. However, for parsimony sake the 
HC grids are not distributed as separate products. 

3.3.1 Spatial data 
HABIT@ models are based on GIS grids representing a variety of environmental variables 
such as cover type, stand age, biomass, slope, hydrological regime, roads and development. 
In the context of LCAD, these environmental variables include a modified version of the 
ecological systems map, a suite of ecological settings variables, and a suite of ecological 
integrity metrics, as follows. 

3.3.1.1 Ecological systems 

The primary land cover grid used in HABIT@ models is a modified version of the map 
developed by The Nature Conservancy in which they comprehensively mapped wildlife 
habitat in the eastern U.S (Anderson 2010) based on NatureServe’s ecological systems 
(“NatureServe Explorer: An Online Encyclopedia of Life.” 2011), which we refer to as  
DSLland. A detailed description of our DSLland map is provided elsewhere (McGarigal et al 
2017), but with regards to the use of DSLland in HABIT@ models, there are three 
important modifications: 
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Figure 6. Example of a species' Habitat Capability (HC) index expressed as a continuous 
surface; shown here for the blackburnian warbler in the Northeast in 2010. 
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1) Water bodies — The original TNC map identifies all water as open water, and does not 
make distinctions between lentic and lotic. Furthermore, the TNC map does not map 
streams at all. These distinctions, as well as estimates of stream flow and gradient, are 
important components in assessing the capacity of the landscape to provide suitable 
habitat as measured by HABIT@, particularly for riparian-dependant species. 
Therefore, we replaced open water in the DSLland map with the National Wetlands 
Inventory (NWI) lentic and lotic classifications. Additionally, we used the NWI 
classifications for estuarine and marine tidal and subtidal classes. We also 
implemented a multi-step process to add National Hydrography Dataset (NHD) 
channel-forming streams with estimates of stream flow and gradient to the DSLland 
map.  

2) Development — Although development was included in the TNC map, development 
intensity was not defined (i.e., the map does not differentiate between low, medium 
and high density development). Additionally, development in the TNC map was based 
on an out-dated data source, the 2001 National Land Cover Database (NLCD). We 
deemed both of these deficiencies as important in order to accurately assess the 
capacity of a landscape to support wildlife. Therefore, we burned into the DSLland 
map development classes from the 2011 NLCD grid (Xian et al. 2009) and maintained 
all development categories (low, medium and high). 

3) Roads and Traffic — Roads were not explicitly part of the TNC map. They were 
represented in the TNC map only as developed cells (and thus completely confounded 
with development) as mapped by 2011 NLCD, were often omitted altogether due to 
their small footprint and linear configuration, and there was no contain information 
on road traffic rates. We deemed that accurate representation of roads, independent of 
development, as well as traffic rates, were crucial components to informative HABIT@ 
models. Therefore, in a complex, multi-step process, we removed roads from the 
developed class in the DSLland map and burned in new roads using the TIGER road 
shapefiles (“2010 TIGER/Line Shapefiles Main Page” 2011), and assigned traffic rates 
to each road segment.  

3.3.1.2 Ecological settings variables 

The ecological settings variables include a large suite of biophysical descriptors, including a 
suite of abiotic variables (e.g., soil texture, flow volume), biomass of forested systems, and 
anthropogenic variables (e.g., road traffic rate, terrestrial barriers). With respect to habitat 
modeling in particular, we selected total above ground live biomass (Mg/ha), as calculated 
using the equation from Jenkins et al. (2003), as the sole vegetation characteristic. We 
believed, a priori, that biomass is an important predictor of species habitat quality, 
providing information regarding seral stage, and therefore useful for building HABIT@ 
models. 

Briefly, our current approach models biomass growth trajectories based on changes in 
biomass, as measured by Forest Inventory and Analysis (FIA; 1988-2011), given stand age 
and other site-level ecological setting covariates. These models are applied to the National 
Biomass and Carbon Dataset (NBCD) for the year 2000 
(http://www.whrc.org/mapping/nbcd/) to grow biomass to the year 2010. Finally, recent 

http://www.whrc.org/mapping/nbcd/
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forest disturbances mapped by the University of Maryland are incorporated into the 2010 
biomass estimates. The biomass growth models are then applied to the 2010 layer to in 
conjunction with stochastic disturbances to acquire 2080 biomass estimates for forested 
ecological systems. See technical document on disturbance and succession (McGarigal et al 
2017) for a full explanation of this process. 

3.3.1.3 Ecological integrity metrics 

The ecological integrity metrics are associated with the coarse-filter assessment and include 
a suite of metrics computed for each cell representing the relative intactness (i.e., level of 
anthropogenic impairment) and resiliency to anthropogenic stress (see technical document 
on integrity, McGarigal et al 2017, for details). While these metrics are principally reserved 
for the coarse-filter assessment, they are available for use in HABIT@ models as well.  

3.3.2 Resistant kernels 
Resistant kernels play an important role in determining home range capability (and in the 
computation of the ecological integrity metrics) and are a relatively novel method, so they 
warrant special attention here. The resistant-kernel estimator, introduced by Compton et 
al. (2007), is a hybrid between two existing approaches: the standard kernel estimator and 
least-cost paths based on resistant surfaces.  

The standard kernel estimator, given two-dimensional data (e.g., x,y points), produces a 
three-dimensional surface representing an estimate of the underlying probability 
distribution by summing across bivariate curves centered on each sample point. The 
standard kernel estimator begins by placing a standard kernel over each sample point. 
Here, we can think of the standard kernel as estimating the ecological neighborhood of a 
focal cell (or sample point). The sum of all the kernels is a surface that represents the 
density of sample points in the ecological neighborhood of any location. Standard kernels 
can be used to estimate density for point features (e.g., vernal ponds), linear features (e.g., 
roads), patches (e.g., land cover types), and even continuous surfaces (e.g., canopy cover). 
The key is that the standard kernel allows one to estimate the density of some feature of 
interest that incorporates some ecological knowledge about the size and shape of the 
ecological neighborhood. 

Resistant surfaces (also referred to as cost surfaces) are being increasingly used in 
landscape ecology, replacing the binary habitat/nonhabitat classifications of island 
biogeography and classic metapopulation models with a more nuanced approach that 
represents variation in habitat quality (e.g., Ricketts 2001). In a patch mosaic, for example, 
a resistance value (or cost) is assigned to each patch type, typically representing a divisor of 
the expected rate of ecological flow (e.g., dispersing or migrating animals) through a patch 
type. For example, a forest-dependent organism might have a high rate of flow (and thus 
low resistance) through forest, but a low rate of flow (and thus high resistance) through 
high-density development. In this case, the cost assigned to each patch type in the resistant 
surface may represent the willingness of the organism to cross the patch type, the 
physiological cost of moving through the patch type, the reduction in survival for the 
organism moving through the patch type, or an integration of all these factors. Empirical 
data on costs are often lacking, but can be derived from a variety of data sources, including 
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detection, movement (e.g., capture/recapture, telemetry) and/or genetic data for the 
organism (or process) under consideration. Traditional least-cost path analysis finds the 
shortest functional distance between two points based on the resistant surface. The cost 
distance (or functional distance) between two points along any particular pathway is equal 
to the cumulative cost of moving through the associated cells. Least-cost path analysis finds 
the path with the least total cost. This least-cost path approach can be extended to a 
multidirectional approach that measures the functional distance (or least-cost path 
distance) from a focal cell to every other cell in the landscape, or from every cell (treated as 
a focal cell) to every other cell. In this sense, the multi-directional approach (from all cells 
to all cells) represents the most synoptic approach available for measuring functional 
connectivity.  

In the resistant kernel estimator, the complement of least-cost path distance (a.k.a. 
functional proximity) to each cell from the focal cell is multiplied by a weight reflecting the 
shape and width of the standard kernel. Consequently, given the typical shape of a standard 
kernel (e.g., Gaussian), the least-cost path distance asymptotically approaches infinity after 
roughly three standard deviations from the focal cell. The end result is a resistant kernel 
that depicts the functional ecological neighborhood of the focal cell (Fig. 7). In essence, the 
standard kernel is an estimate of the fundamental ecological neighborhood and is 
appropriate when resistant to movement is irrelevant (e.g., highly vagile species), while the 
resistant kernel is an estimate of the realized ecological neighborhood when resistance to 
movement is relevant. The resistant kernel can also be thought of as representing a process 
of spread (e.g., dispersal) outward from the focal cell, that combines the cost of moving 
through a heterogeneous resistant neighborhood with the inherent typically nonlinear cost 
of moving any distance away from the focal cell. 

Resistant kernels have a wide variety of uses in ecological modeling. In the context of 
HABIT@, we use a resistant kernel approach for computing home range capability. 
Specifically, resistance values are assigned to land cover types such that home range kernels 
preferentially expand into higher quality land cover types that are assigned low resistance 
values. Barriers to home ranges (e.g., developed areas) are assigned high resistance values. 
Resistance values are species-specific and represent an organism’s willingness to 
incorporate different cover types into the home range. The least-cost path analysis yields 
the functional proximity of surrounding cells to each focal cell. Scaling the proximities by a 
density function (Gaussian in this case) results in a resistant kernel for a focal cell. The 
resulting resistant kernel is a three-dimensional surface with a volume equal to a value less 
than or equal to one (a resistant kernel in a homogeneous non-resistant neighborhood has 
a value of one) representing the probability of use surrounding the focal cell; in other 
words, it represents a potential home range utilization kernel centered on the focal cell 
(Fig. 7). This home range kernel is used to weight the local resources available at each cell 
within the potential home range centered on the focal cell to derive an index of habitat 
capability for the focal cell. The use of the resistant kernel means that the habitat capability 
index represents not only the quantity and quality of local resources surrounding the focal 
cell, but also the accessibility of those resources. In HABIT@ models, we build a resistant 
kernel (i.e., home range kernel) and assess habitat capability for each cell that confers any 
breeding habitat value. 



DSL Project Component:  Modeling focal species 

Author: K McGarigal & W DeLuca            Page 22 of 41   
 

 

 
Figure 7. Hypothetical resistant kernel used to depict a potential home range utilization 
distribution centered on a focal cell. The resistant kernel spreads outward from the focal 
cell iteratively depleting a "bank account" based on local resistance (e.g., as conferred by 
various land cover types, in this example-developed) until the bank account is completely 
deleted. The bank account is scaled to the desired bandwidth of the kernel. The kernel value 
represents the least-cost path distance to each cell from the focal cell. The complement of 
the least-cost path distance (a.k.a. proximity distance) is multiplied by a weight reflecting 
the shape and width of the standard kernel (usually based on a Gaussian function) and the 
result is a resistant kernel that reflects local resistance and ecological distance relationship 
expressed via the size and shape of the standard kernel. Shown here is the difference 
between a standard kernel (a) and a resistant kernel (b) for three focal cells in a 
heterogeneous landscape.  
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3.4 Prevalence Model 
The next step is to develop a Prevalence model for each selected representative species. 
Briefly, a prevalence model estimates how prevalent a species is (i.e., its probability of 
occurrence) across its range based solely on its current spatial distribution without explicit 
regard to climate suitability, habitat capability or other factors. In the context of the LCAD 
model, we use the species' prevalence model to account for unmeasured biogeographic 
factors influencing the species' distribution that is not necessarily captured by the climate 
niche or habitat model. Importantly, prevalence is estimated for the current timestep 
(2010) only and is thus treated as static for the 70-year simulation, in the same manner as 
the distribution of ecological systems. A general description of the prevalence modeling 
approach follows and is illustrated using results for wood thrush. The process described 
next is the same for all species, even though some of the details, such as sources of 
empirical data, may vary slightly among species. 

First, we compile an independent data set on species occurrence within the assessment 
area. Our goal is to consistently use Breeding Bird Survey (BBS) data (as described above) 
to derive prevalence models for bird species. However, in the event that BBS data does not 
provide adequate samples, for example with non-avian species or avian species with very 
restricted distributions, we augment this dataset with other existing data as needed and 
deemed appropriate (e.g., Mountain Birdwatch data).  

Second, we subdivide the landscape (i.e., Northeast region) into 20 km square cells and 
compute a Gaussian distance-weighted interpolation of proportional presence using a 5 km 
bandwidth (standard deviation) for the Gaussian kernel. Briefly, this interpolation process 
produces an estimate for each 20 km cell by computing the average proportional presence 
among all neighboring observations (e.g., BBS segments) after weighting each observation 
by its Gaussian distance (from the centroid of the observation) to the focal cell.  

The output of the prevalence model is a continuous surface grid depicting prevalence for 
each species in 2010; values range between 0 (no occurrences within say 20 km) and 1 
(100% present at nearby observations) (Fig. 8). Note, the prevalence grid is not distributed 
as a separate product. 

3.5 Landscape Capability Model 
The next step is to integrate the climate niche, habitat capability and prevalence into a 
single Landscape Capability (LC) model for each selected representative species. Briefly, a 
LC model represents an index of the species' relative probability of occurrence based on 
climate, habitat and other biographic factors (as represented by prevalence); it is our best 
estimate of the species' distribution based on measurable factors (Fig. 9). Note, we 
acknowledge that there may be other factors influencing species' distributions, such as 
interspecific interactions, human persecution and disease, but these are outside the scope 
of modeling with extant data at the regional scale. In the context of the LCAD model, we use 
the species' LC to predict the current and future distribution of the species under 
alternative landscape change scenarios. Importantly, these predictions are used to 
determine where the species might occur based on climate suitability, habitat capability  
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Figure 8. Example of a species' Prevalence index expressed as a continuous surface; 
shown here for the blackburnian warbler in the Northeast in 2010.  
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and prevalence, not where they will actually occur, since the latter depends on whether they 
can and choose to get there from currently occupied sites and the influence of other 
unmeasured factors. A general description of the LC modeling approach follows and is 
illustrated using results for wood thrush. 

To compute LC, we simply multiply the CN, HC and Prevalence grids together that 
essentially treats each of three factors as potentially limiting factors. In other words, by 
multiplying the grids together, we ensure that if a cell has a low value for any of the grids, 
the resulting product will too be low. This safeguards, for example, against locations with 
suitable climate and habitat but no prevalence from receiving a high relative probability of 
occurrence in the LC model. Similarly, it ensures that a location with suitable climate and 
within the species range but containing no habitat will not receive a high relative 
probability of occurrence in the LC model.  

In some cases, where BBS and other supplemental datasets such as MBW do not adequately 
sample the full extent of the species’ range (e.g., blackpoll warbler), the Prevalence estimate 
can exclude portions of the range, thus erroneously reducing the surface to near 0 at these 
locations. In such cases, we exclude prevalence from the LC index and instead simply 
multiply the CN and HC surfaces together to produce the LC index. 

 
Figure 9. Schematic outline of the landscape capability modeling framework, in which we 
separately model the species' climate niche, habitat capability and prevalence, while 
recognizing that there are potentially other factors influencing the species' distribution, and 
then integrate these factors into single index. 
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Based on the approach described above, we generate the following spatial index: 

• Current Landscape Capability (speciesLC) — map depicting each species' relative 
probability of occurrence scaled 0-1 based on the integrated climate-habitat-
prevalence index in 2010 (Fig. 10).   

3.5.1 LC model evaluation 
Because the LC model described above is not a statistical model per se, we cannot evaluate 
the model internally using conventional measures. Instead, we evaluate the performance of 
the model against independent data using a variety of statistical measures, which ultimately 
provides us with a true model validation, as described below. 

First, for species with suitable empirical data on point-level occurrence, we compile an 
independent data set on occurrence within the assessment area. Note, for the purpose of LC 
modeling, coarse-scale data such as the BBS (8 km route segments) and Breeding Bird 
Atlas (5 km squares) is not sufficient, since our purpose is to associate occurrence at the 30 
m cell level. Our goal is to consistently use eBird data (eBird Reference Dataset Version 3.0 
from the Avian Knowledge Network; http://www.avianknowledge.net/content/features/ 
archive/ebird-reference-dataset-3-0-released) to evaluate LC models for bird species. eBird 
is a dataset maintained by the Cornell Lab of Ornithology and the National Audubon 
Society of count data for bird species submitted by novice and expert observers (Munson et 
al. 2011). Note, as mentioned above, for several bird species BBS is not adequate to develop 
CN models; for these species we use eBird data to develop the CN model. Unfortunately this 
precludes eBird as a source of data for model evaluation for these species. In these cases 
and for non-bird species, we attempt to locate other independent, regional data to evaluate 
the LC models.   

For suitable species, we restrict eBird data in the following ways: 

1) We use data from 2005 – 2010, as this time period best matches our land cover data. 

2) We limit surveys to those that occurred only during daylight hours between 05:00 and 
20:00 (Fink et al. 2010). 

3) We limit surveys to dates corresponding to the seasonality of the species' habitat 
capability model. For example, for a breeding season model, we limit the surveys to 
those dates when detections can safely be considered those of breeding, not migrating 
individuals; e.g., Julian dates 145-222 (May 25-August 10) for the wood thrush model.  

4) We limit surveys to "stationary counts" (i.e., those conducted from a single location) to 
ensure that observations can most reliably be attributed to a single location within the 
scale of the climate and habitat data). 

5) To reduce the influence of varying survey time on detections, we limit surveys to those 
<3 hours in duration (Fink et al. 2010). 

6) We prioritize the use of “complete checklist” survey types. For “complete checklists” 
participants are asked to submit all birds detected during the survey. Therefore it is 
assumed that species not listed on the checklist are absent (Fink et al. 2010).  
Complete checklists provide a sample of "presences" and "absences", but typically the  

http://www.avianknowledge.net/content/features/%20archive/ebird-reference-dataset-3-0-released
http://www.avianknowledge.net/content/features/%20archive/ebird-reference-dataset-3-0-released
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Figure 10. Example of a species' current Landscape Capability (LC) index, expressed as a 
continuous relative probability of occurrence surface; shown here for the blackburnian 
warbler in the Northeast in 2010. 
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"absences" far outnumber the "presences" and often the total number of "presences" is 
deemed inadequate to build reliable models. Consequently, we supplement the  

7) "presences" with "present" observations from the "basic" surveys (which are deemed 
present-only surveys and thus absences cannot be implied) in an attempt to produce 
an equal number of confirmed "presences" and "absences".  

8) To reduce the likelihood of selecting late or early migrants or otherwise abnormal 
observations, when selecting "present" locations from the basic surveys (to 
supplement those from the checklists), we constrain the selection to observations 
within the climate niche envelope (CNE).  

9) To reduce the influence of residual spatial autocorrelation, when selecting 
observations from the checklist and basic surveys, we constrain the selection process 
so that only one location is selected within a 250 m radius.  

10) To reduce the influence of geographic bias in the sampling, for each eBird sample 
location that meets the criteria above, we weight each observation by the sampling 
intensity within a 25 km window. Specifically, to avoid the bias caused by unevenly 
distributed survey effort across the region, we impose a 25 km grid on the assessment 
area and count the number of survey points in each grid cell. Each survey point is 
weighted by the reciprocal of the number of sample points in the corresponding cell, 
effectively resulting in equal weight assigned to each grid cell (since the sum of 
weights in each cell equals one). Note, this is a computationally efficient substitute for 
computing the reciprocal of the kernel density of points around each survey location. 
Note, during preliminary analyses we imposed grids of 25, 50, 75, and 100 km and 
found the results of the statistical analysis relatively insensitive to the grid resolution, 
so we retained the finest grid resolution (25 km) to preserve the largest effective 
sample size. 

When there is a large discrepancy in the number of presences and absences a random 
sample of the larger group is taken, such that the sample of presences is equal to the sample 
of absences. 

Second, to validate the predictive ability of the LC index, we use simple logistic regression 
to predict the probability of occurrence as a function of the LC index, with the following 
modeling considerations: 1) we treat each observation as an independent observation and 
make no formal attempt to account for residual spatial autocorrelation (other than as noted 
above), as it is not deemed critical to the point estimates of model parameters (and thus 
model predictions); 2) we assume a binomial error distribution for the binary response; 3) 
we include survey date and time as detection covariates and include effort hours as an offset 
in the model (note, unfortunately the survey design does not allow for a more formal 
treatment of detectability in the model); 4) we weight each observation by the reciprocal of 
the local sampling intensity (as described above); and 5) we take the maximum value of LC 
within 250 m of the survey point as the value for the predictor to account for two factors: a) 
that birds, for example, can often be detected at considerable distances from survey points, 
and b) georeferencing errors in the survey locations (which we know exist in these 
datasets). Note, the regression model predicts the probability of occurrence for each 
observation; a cutpoint or threshold value on the response scale (i.e., probability scale) 
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must be selected in order to classify observations as "present" or "absent". In our case, we 
select the threshold that maximizes the chance-corrected correct classification rate based 
on the Kappa statistic. This approach chooses a threshold that balances the errors of 
omission and commission. 

Third, to assess LC model performance, we compute several summary statistics based on 
the logistic regression abvoe, with an emphasis on the model's predictive ability:  

1) Deviance explained — percent of the deviance explained by the LC model. Deviance 
explained is a measure of the variance in the response explained by the generalized 
linear model and is analogous to R2 in linear regression. High percent deviance 
explained indicates a good model -- one that is able to explain the variation in the 
response well. Note, deviance explained is not a measure of the model's predictive 
ability, but rather its explanatory power. 

2) Area under the curve (AUC) — area under the Receiver Operator Characteristic (ROC) 
curve. The ROC curve describes the compromises that are made between the model 
sensitivity (proportion of observed presences correctly predicted to be present) and 
false positive (observed absences wrongly predicted to be present) fractions as the 
decision threshold is varied; a species is predicted to be present or absent at a site 
based on whether the predicted probability for the sample is higher or lower than a 
specified threshold probability value. Furthermore, the sensitivity and false positive 
values are independent of the prevalence of the positive group (i.e., the proportion of 
total observations in the present group) because they are expressed as a proportion of 
all sites with a given observed state (Swets, 1988). ROC plots provide a threshold-
independent method of evaluating the performance of presence/absence models. A 
good model will achieve a high true positive rate while the false positive rate is still 
relatively small; thus the ROC plot will rise steeply at the origin, and then level off at a 
value near the maximum of 1. The ROC plot for a poor model (whose predictive ability 
is the equivalent of random assignment) will lie near the diagonal, where the true 
positive rate equals the false positive rate for all thresholds. ROC analysis is therefore 
independent of both species prevalence and decision threshold effects, which gives 
rise to the AUC index.  

AUC ranges from 0.5 for models with no discrimination ability, to 1 for models with 
perfect discrimination. This index can also be interpreted in terms of the true positive 
and false positive values used to create the curve. A general rule of thumb for 
interpreting the index is as follows. Areas between 0.5 and 0.7 indicate poor 
discrimination capacity because the sensitivity rate is not much more than the false 
positive rate. Values between 0.7 and 0.9 indicate a reasonable discrimination ability 
appropriate for many uses, and rates higher that 0.9 indicate very good discrimination 
because the sensitivity rate is high relative to the false positive rate (Swets, 1988). 
Hanley and McNeil (1982) have shown that the ROC index can also be interpreted as 
the probability that a model will correctly distinguish between two observations, one 
positive and the other negative. In other words, if a positive observation and a 
negative observation are selected at random the index is an estimate of the probability 
that the model will predict a higher likelihood of occurrence for the positive 
observation than for the negative observation.  
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3) Kappa — chance-corrected 
correct classification rate. 
The discrimination 
performance of a binary 
logistic regression can be 
assessed by examining the 
agreement between 
predictions and actual 
observations, using a 2x2 
classification table (also 
known as a confusion 
matrix); a species is 
predicted to be present or 
absent at a site based on 
whether the predicted 
probability for the sample is 
higher or lower than a 
specified threshold 
probability value. For a 
specified threshold value, 
Kappa measures the 
proportional improvement 
in correct classification over 
that expected by chance. 
Note, unlike AUC, Kappa is 
a threshold-dependent 
measure of model 
discrimination. Here, we 
select the threshold that 
maximizes Kappa, and 
judge model performance 
by the magnitude of this 
Kappa.  

We also conduct a Monte Carlo randomization test of the observed maximum Kappa. 
Specifically, we compute the observed Kappa and compare it to the distribution of 
Kappa under the null distribution (Fig. 11). The null distribution represents the 
distribution of Kappa expected if the species' occurrences are distributed randomly 
with respect to maximum LC values with 250 m of the survey point (i.e., our LC index 
has no real relationship to the species' distribution). We generate the null distribution 
by randomly shuffling the "present" and "absent" locations, recomputing Kappa, and 
repeating the process 1,000 times. We expect the original model to have a greater 
Kappa than the bulk of the null distribution if the species' distribution is nonrandom 
with respect to maximum LC. Specifically, we compute the upper (one-sided) p-value 
as the proportion of the null distribution greater than or equal to the observed Kappa. 

 
Figure 11. Monte Carlo randomization test (1,00o 
replications) 0f the observed Kappa (chance-correct 
correct classification rate) for the logistic regression 
model predicting species' occurrence from an integrate 
index of climate niche, habitat capability and prevalence; 
shown here for blackburnian warbler in the Northeast. 
The null distribution of Kappa is given by the frequency 
distribution, while the observed Kappa (o.27) is shown 
as a vertical dashed line. The p-value (<0.001, in this 
case) is computed as the proportion of the null 
distribution greater than or equal to the observed Kappa. 
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We interpret a significant difference (i.e., p-value ≤ 0.05) as a confirmation of the 
model's discriminatory power. 

4) Omission and Commission error rates — at the threshold value that maximizes 
Kappa, the resulting confusion matrix gives the number of observed presences 
wrongly predicted to be absent (omission errors) and the number of observed 
absences wrongly predicted to be present (commission errors). Note, like Kappa, the 
omission and commission error rates are a threshold-dependent measure of model 
discrimination. Here, we report the omission and commission error rates for the 
threshold that maximizes Kappa and judge model performance by the magnitude of 
these error rates. 

3.6 Landscape Change Indices 
The final step is to compute a variety of non-spatial and spatial indices to reflect the species' 
potential response to climate change, habitat change or both.  

First, we compute a complementary set of non-spatial indices for each species based on the 
proportional change in LC due to climate change, habitat change, or both within the 
specified geographic extent. These non-spatial indices are primarily useful for establishing 
conservation objectives or targets for species in conservation design or for comparison 
among landscape change scenarios. The response indices are computed for each landscape 
change simulation based on the 2080 predictions and summarized as the mean across 
simulations, and the "current" below refers to 2010 (Table 3).  

1) Current LC — sum of current range-rescaled LC values multiplied by 0.09 to convert it 
to maximum LC-equivalent hectares; it ranges from 0 (no habitat) to the study area 
extent in hectares (when the entire study area is all optimal habitat). Note, this is a 
baseline metric for computation of the other indices. 

2) Future climate response — sum of future raw-scaled LC values calculated with current 
habitat and predicted future climate in 2030 and 2080 (averaged across RCP4.5 and 
8.5 scenarios), minus the sum of current (2010) raw-scaled LC values, divided by the 
sum of current (2010) raw-scaled LC values, multiplied by 100 to convert to a 
percentage; it ranges from -100 (complete loss of LC due to climate change) to 
unbounded positive values reflecting an expanding CNE within the project area. This 
index represents the percentage change in LC from 2010 to 2080 due solely to climate 
change. 

3) Future habitat response — sum of future raw-scaled LC values calculated with current 
climate and predicted future habitat in 2030 and 2080 (averaged across urban growth 
simulations), minus the sum of current (2010) raw-scaled LC values, divided by the 
sum of current (2010) raw-scaled LC values, multiplied by 100 to convert to a 
percentage; it ranges from -100 (complete loss of LC due to habitat change) to 
unbounded positive values reflecting improving habitat conditions within the project 
area. This index represents the percentage change in LC from 2010 to 2080 due solely 
to habitat change.  
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4) Future climate and habitat response — sum of future raw-scaled LC values in 2030 
and 2080 (averaged across urban growth and climate change simulations) minus the 
sum of current (2010) raw-scaled LC values, divided by the sum of current (2010) raw-
scaled LC values, multiplied by 100 to convert to a percentage; it ranges from -100 
(complete loss of LC due to landscape changes) to unbounded positive values 
reflecting improving LC within the project area. This index represents the percentage 
change in LC from 2010 to 2080 due to both climate and habitat changes. 

Second, we derive a variety of spatial indices representing the species' potential response to 
climate change, habitat change or both based on changes in LC under different assumptions 
or for different purposes. These spatial indices are useful either for prioritizing locations for 
conservation action for each species in the context of landscape conservation design or for 
visualizing the potential changes in the distribution of a species due to climate change, 
habitat change or the combination of the two. These spatial indices are computed for each 
landscape change simulation based on the 2080 predictions only (for parsimony sake) and 
summarized as the mean across simulations.  

1) Future Landscape Capability (speciesLC2080) -- map depicting each species' index of 
occurrence based on an average of the predicted LC surface across landscape change 
simulations in 2080 (Fig. 12). Specifically, we derive the LC index in 2080 under each 
landscape change simulation (i.e., urban growth and climate change simulation) and 
average the predictions to depict the future LC as a continuous surface that ranges 
from 0 (non habitat) to 1 (optimal conditions).  

2) Climate response (speciesCR2080) -- map depicting the future LC calculated with 
current habitat and predicted future climate in 2080 (averaged across RCP4.5 and 
RCP8.5 scenarios) within the project area (Fig. 13). This index emphasizes places 
with high current habitat and climate capability that maintain or increase in climate 
suitability over time without regard to future changes in habitat capability. 

3) Habitat response (speciesHR2080) -- map depicting the mean future LC calculated 
with current climate and predicted future habitat in 2080 (averaged across urban 
growth simulations) within the project area (Fig. 14). This index emphasizes places 
with high current habitat and climate capability that maintain or increase in habitat 
capability over time without regard to future changes in climate suitability. 
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Table 3. Example species' landscape change indices in the Northeast Region in 2010. 
Current (2010) Landscape Capability (LC) is equal to the LC index summed across cells in 
2010, expressed in hectares, and it ranges from 0 (no habitat) to the extent of the project 
area (i.e. when the entire project area is optimal habitat). Landscape change indices 
represent the percentage change in LC from 2010 to 2030 or 2080 due to climate change, 
habitat change or both (see text for details); 0 reflects no change from the current. 

Species 

Current 
(2010) 

Landscape 
Capability 

(LC) 

 Landscape Change Indices (%)  

 Climate 
Response  

Habitat 
Response  

Climate & 
Habitat 

Response  

2030 2080 2030 2080 2030 2080 

American 
woodcock 72,916,983 -1.1 -6.1 tbd tbd tbd tbd 

Blackburnian 
warbler 65,756,067 -18.8 -68.0 tbd tbd tbd tbd 

Blackpoll warbler 1,541,033 -20.0 -65.1 tbd tbd tbd tbd 

Eastern 
meadowlark 4,745,130 18.0 46.3 tbd tbd tbd tbd 

Louisiana 
waterthrush 441,392 31.1 123.8 tbd tbd tbd tbd 

Marsh wren 1,598,923 17.0 62.0 tbd tbd tbd tbd 

Moose 289,266,365 -3.2 -4.4 tbd tbd tbd tbd 

Northern 
waterthrush 27,579,842 -30.2 -70.3 tbd tbd tbd tbd 

Prairie warbler 66,780 15.5 42.2 tbd tbd tbd tbd 

Ruffed grouse 166,875,203 7.8 -46.0 tbd tbd tbd tbd 

Wood duck 454,954 17.4 59.2 tbd tbd tbd tbd 
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Figure under development 

Figure 12. Example of a species' future Landscape Capability (LC) index, expressed as a 
continuous relative probability of occurrence surface averaged across landscape change 
simulations; shown here for the blackburnian warbler in the Northeast in 2080. 
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Figure 13. Example of a species' Climate Response index, defined as the future Landscape 
Capability index calculated with current habitat and predicted future climate in 2080 
(averaged across RCP4.5 and RCP8.5 scenarios) within the project area. High values 
represent places with high current LC that maintain climate suitability over time without 
regard to future changes in habitat capability. Shown here for the blackburnian warbler in 
the Northeast. 
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Figure under development 

Figure 14. Example of a species' Habitat Response index, defined as the future Landscape 
Capability index calculated with current climate and predicted future habitat in 2080 
(averaged across urban growth simulations) within the project area. High values represent 
places with high current LC that maintain habitat capability over time without regard to 
future changes in climate suitability. Shown here for the blackburnian warbler in the 
Connecticut River watershed. 
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4 Alternatives Considered and Rejected 
We considered the following alternative and options: 

First, we sought to develop multi-level occupancy (observation-process) models that 
account for detectability, but determined that the extant datasets available to us did not 
have a study design that lent itself to modeling detectability at the spatial resolution needed 
for LCAD (i.e., 30 m). In the statistical evaluation of LC we incorporated detection 
covariates (e.g., date and time) as fixed effects in the logistic regression model as the best 
available option to account for factors influencing detectability. 

Second, we considered using a more conventional approach to model species-habitat 
relationships involving regressing species presence/absence on the raw habitat covariates. 
The pros of using this approach is that it is entirely empirically based (i.e., there is no 
expert opinion involved except in the selection of covariates to include in the model) and 
the results are straightforward and intuitive, and it represents the norm in the scientific 
literature. The cons of this approach it that it does not easily accommodate complex, multi-
scale habitat relationships that account for habitat quantity, quality and accessibility. 
Instead, we opted to use HABIT@ models for following reasons. First, HABIT@ models can 
be constructed for any species regardless of data availability, because they are expert 
derived, and thus provide a consistent platform for modeling all representative species. 
Second, and more importantly, HABIT@ models allow for much richer habitat 
relationships, particularly multi-level and multi-scale relationships that account for the 
habitat quantity, quality and accessibility at multiple levels of organization (e.g., local 
resource, homerange and population), that better correspond to our understanding of 
species' habitat selection than conventional models. Third, the output of a HABIT@ model 
is merely a single integrated habitat covariate that is derived by an expert-driven process, 
but this is no different than deriving habitat covariates from raw data sources that is 
common in conventional habitat modeling; the difference is in the complexity of our 
derivation of the habitat covariate. Lastly, because we can assess and validate the final 
model using extant data on species' presence/absence, we can verify that the model 
performs well in light of the empirical data. Thus, while the parameters of the HABIT@ 
models are not all formally optimized with respect to the empirical data, the model is 
empirically assessed, which allows us to confirm that the model is a "good" model even if 
we cannot claim that it is the "optimal" model. Theoretically, it is conceivable to fully 
optimize a HABIT@ model based on empirical data, but the computational demands for 
such an undertaken are too great to make this practical with current computing resources. 

Third, one area that involved substantial consideration of alternatives was how to 
incorporate climate change into species distribution modeling. Our original concept was to 
assess the influence of climate change on habitat capability by modeling shifts in the 
distribution of ecological systems, which then indirectly through the HABIT@ models 
would affect habitat capability. Ultimately, we concluded that it was not realistic to model 
changes in the distribution of ecological systems (see Ecological Systems documentation for 
more details). Given the static distribution of ecological systems, we considered integrating 
climate into the HABIT@ models directly. Ultimately, we concluded that doing so would 
completely confound the influence of climate and habitat on species distribution. Given our 
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uncertainty in how climate and habitat interact to affect species distributions, we concluded 
that it was better to decouple these factors and treat climate separate from habitat. Thus, 
we developed a two-pronged modeling approach in which we model the species' climate-
niche and habitat capability separately, and then combine the two along with prevalence to 
predict the distribution of the species. However, by maintaining separate climate and 
habitat components, it allows us to combine and intersect these in different ways to predict 
the future distribution of the species under alternative assumptions about how the species 
will respond to climate change. This seemed like the most credible approach for predicting 
future distributions of species.  

5 Major Implementation Constraints 
There are at least two major implementation constraints: 

First, a constraint on building HABIT@ models (or any other type of model) is that the 
spatial data required to represent the landscape in a meaningful way may not exist for a 
species. Habit@ models (and all species distribution models) are only as good as our 
understanding and the data permit. For some species, we simply do not have the spatial 
environmental data needed to effectively model the species' habitat even if we have an 
ecological understanding of the species' habitat requirements. For such species, there is no 
solution other than to acquire the necessary spatial data, which is beyond the scope of this 
project. We attempted to account for this factor in the prioritization of representative 
species, whereby species with insufficient spatial data were assigned a low priority for 
modeling.  

Second, the approach we developed to assess species distribution models relies entirely on 
extant presence/absence data. Readily available eBird data provide us with adequate data 
to assess the models for most bird species. Unfortunately, similar extant datasets do not 
exist for other taxonomic groups. Consequently, we will explore presence-only datasets that 
exist for herpetofauna (e.g., HerpNet, AmphibiaWeb) and will develop appropriate 
assessment methods as we encounter each unique situation.  

6 Major Risks and Dependencies 
The accuracy and utility of any species distribution model is completely dependent on the 
quality of the land cover and other environmental data described in Section 4.3.1. To date, a 
few shortcomings have been identified in the DSLland map that could have major 
implications on the quality of the models for forested species. For example, in the 
Pocomoke River pilot watershed the coastal plain hardwood forest ecological system is 
accurately mapped as a dominant native system in the watershed; however, a majority of 
this system has been subjected to extensive management, resulting in extensive conversion 
of this native system to loblolly pine plantation. This discrepancy would result in a 
significant underestimation of suitable habitat for pine-dependant species (e.g., brown-
headed nuthatch) and a significant overestimation of suitable habitat for hardwood forest-
dependant species (e.g., wood thrush). This deficiency has been remedied by mapping 
evergreen plantations (by the South Atlantic LCC group) in the NALCC. However, it is 
unclear what other spatial data deficiencies may exist, but this example points to the need 
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to carefully scrutinize the quality of all spatial data layers for their use in species 
distribution models.   

Reliable, regional spatial data for forest vegetation characteristics and successional stage 
are notoriously difficult to acquire. The imputations of FIA data developed by the USFS 
Northern Research Station and described in the documentation on Disturbance and 
Succession, enable us to model a variety of forest vegetation attributes across the 
Northeast. However, there are several sources of inaccuracy of the FIA imputations as 
discussed in the Disturbance and Succession documentation that ultimately make these 
products unacceptable at the spatial resolution we are modeling habitat. Instead, we are 
using a much higher quality product of above-ground live biomass developed by USGS 
Woods Hole as modified by other data products on vegetation disturbance developed by the 
University of Maryland. But products of comparable quality are not yet available for other 
vegetation structure attributes that might be relevant to some species. Thus, our current 
species' distribution models are limited to the use of biomass to represent vegetation 
structure. For some species this may be entirely sufficient, but for others it may not.  

It is important to acknowledge that 87 terrestrial species were selected to represent habitat 
clusters across the Northeast. Unfortunately, limited resources to date have allowed us to 
model only 30 species in phase 1 and 2 combined. Consequently, our current species-level 
ecological assessment is incomplete and will certainly change as more species are added to 
the mix. Thus, the results of our focal species assessment and the application of these 
results to landscape conservation design must be viewed with caution. 
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Appendix – Species Products 
The following products are derived and distributed (from the DSL project website) for each 
modeled species. Note, there are many additional interim products stored internally but not 
distributed. 

1. speciesCN - Climate Niche (CN) maps depicting each species' relative probability of 
climate suitability (0-1) based on the climate in 2010. Note, Climate Niche Envelope 
(CNE) binary maps depicting areas "inside" versus "outside" the species' CNE based on 
the climate in 2010 can be created by thresholding the CN grids at the specified 
cutpoint. 

2. speciesCN2080 - Climate Niche (CN) maps depicting each species' relative 
probability of climate suitability (0-1) based on the predicted climate in 2080 under the 
RPC 4.5 and 8.5 climate change scenarios (averaged across scenarios). Note, Climate 
Niche Envelope (CNE) binary maps depicting areas "inside" versus "outside" the 
species' CNE based on the predicted climate in 2080 under the RPC 4.5 and 8.5 climate 
change scenarios can be created by thresholding the CN grids at the specified cutpoint. 

3. speciesCZ2080 - Climate Zones (CZ) maps depicting zones of potential persistence, 
contraction and expansion in the future distribution of each species in 2080 under  the 
RCP 4.5 and 8.5 climate change scenarios (averaged across scenarios). 

4. CNEtable - Climate Niche (CN) table summarizing each species' CN in 2010 and the 
proportional change in CN in 2030 and 2080 under the RCP 4.5 and 8.5 climate change 
scenarios (averaged across scenarios). 

5. speciesLC - Landscape Capability (LC) maps depicting each species' relative 
probability of occurrence (0-1) based on the integrated climate-habitat-prevalence index 
in 2010. 

6. speciesLC2080 - Landscape Capability (LC) maps depicting each species' relative 
probability of occurrence (0-1) based on the integrated climate-habitat-prevalence index 
in 2080 under each landscape change simulation (averaged across urban growth and 
climate change simulations). 

7. speciesCR2080 - Climate response maps depicting the mean future LC calculated 
with current habitat and predicted future climate in 2080 (averaged across RCP4.5 and 
RCP8.5 scenarios) within the project area. 

8. speciesHR2080 - Habitat response maps depicting the mean future LC calculated 
with current climate and predicted future habitat in 2080 (averaged across urban 
growth simulations) within the project area. 

9. LCtable - Landscape Capability (LC) table summarizing LC (in maximum-LC 
equivalent hectares) in 2010 and the proportional change in area in 2030 and 2080 
(averaged across landscape change simulations) due to climate change, habitat change 
or both.  
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