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1 Problem Statement 
One of the critical landscape change drivers in the Northeast (and elsewhere) is human 
development associated with urban growth. Indeed, urban growth is perhaps the principal 
driver of permanent landscape change affecting both the integrity of ecological systems and 
the capacity of the landscape to support species. Thus, any assessment of the current 
and/or future landscape to support biodiversity must account for urban growth. In this 
document, we describe the approach for modeling urban growth in Landscape Change, 
Assessment and Design (LCAD) model of the Designing Sustainable Landscapes (DSL) 
project (McGarigal et al 2017).  

2 Solution Statement 
We sought an urban growth model that would meet the following objectives: 

• Ensure the model can be applied over the entire Northeast; 

• Allow multiple types of land-use change, including the development of new low-, 
medium-, and high-intensity land-use and the transition of low to medium, low to 
high, and medium to high; 

• Allow for the implementation of multiple urban growth scenarios; 

• Model both the pattern of growth and amount of growth; 

• Enforce non-stationarity of urban growth patterns and amounts across space and 
time; and 

• Use an empirically-based approach that makes the best use of available data. 

To meet these objectives, we developed a custom urban growth model (SPRAWL) to project 
land-use conversion over time under different scenarios of demand for land-use conversion 
and sprawl intensity. The model consists of a training phase and an application phase with 
four inter-dependent model components through which empirical models trained by 
historical growth information are applied in a non-stationary way across the Northeast 
using a unique matching approach.  

The training phase utilizes historical data from three training regions, located within the 
Northeast, for which spatially explicit, decade long, land-use data are available. The four 
components of the application phase were developed independently and then combined to 
form the integrated model. The multi-part structure of this model (with separate demand, 
suitability and allocation components) is loosely based on the CLUE-s model framework 
(Verburg et al. 2002), which has since been modified and utilized by other land-use/land-
cover change models, including the USGS FORE-SCE model (forecasting scenarios of land 
cover change)(Sohl et al. 2007, Sohl and Sayler 2008). In an effort to install non-
stationarity across space and time, and because we are implementing this strategy 
throughout the entire Northeast, we adopted an additional matching element that is unique 
to our approach, details of which are outlined below.  
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3 Key Features 

3.1 Training phase  
The SPRAWL model utilizes historical training data to characterize urban growth amount 
and spatial patterns for six different transition types (e.g., undeveloped to low-intensity 
development, medium-intensity to high-intensity development). The training data were 
taken from a subset of the Northeast, specifically Maine and Massachusetts, and the 
Chesapeake Bay (Fig. 1). The primary training data source for Maine and Massachusetts 
was the National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center 
Coastal Change Analysis Program (C-CAP) data which was available 1996 and 2006 
(http://www.csc.noaa.gov/crs/lca/northeast.html). We also utilized Chesapeake Bay 
Watershed Landcover Data Series (CBLCD) available from 1984 and 2006 
(ftp://ftp.chesapeakebay.net/Gis/CBLCD_Series/), which was based partly on the C-CAP 
data as well.  

We divided each of the three 
training regions into non-
overlapping training windows 
~15 km on a side (Fig 1). Each 
training window occupied a 
position in a standardized two-
dimensional state space defined 
by the intensity of development 
and open water. We located 16 
uniformly distributed "model 
points" or locations in this state 
space (Fig. 2) and fit separate 
binary logistic regression 
models for each of the six 
transition types to a set of 
training points (i.e., cells of the 
corresponding transition type 
at least 150 m apart matched 
with an equal number of 
randomly selected "available" 
cells) from the training 
windows located near each 
model point in the model state 
space. The predictor variables 
in the logistic regression 
models included a variety of 
measures of intensity of open 
water, roads and development 
at different scales, as well as a 
transformation of slope and 
distance to nearest road. 

 
Figure 1. Training data for the urban growth model were 
derived from the three areas depicted within the 
Northeast. Solid line depict our gridded (~5 km 
resolution) version of Core Base Statistical Areas (CBSAs) 
and counties (i.e., subregions) across the Northeast for 
which we designate the demand (in cells) for urban 
growth based on the 2010 RPA forecasts (Wear 2011). 

http://www.csc.noaa.gov/crs/lca/northeast.html
ftp://ftp.chesapeakebay.net/Gis/CBLCD_Series/
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Ultimately, we ended up with a logistic regression model to predict each of the six 
transition types for each of 12-16 model points, depending on transition type, uniformly 
distributed throughout the state space defined by the intensity of development and open 
water (Fig. 3).  

In addition, for each training window we also computed the historical distribution of 
transition types (i.e., the proportion of total transitions comprised of each of the six 
transition types), the distribution of observed sizes of disjunct development patches, and 
the total amount (in cells) of historical development - the 'match amount', for use in the 
simulation (see below). 

3.2 Application phase  
The SPRAWL model consists of several interacting components. The basis for the ‘current’, 
or initial, land-use condition in the LCAD simulation (set to be roughly the year 2010) is the 
set of developed landcover classes in DSLland (see DSLland document, McGarigal et al 
2017), including low-, medium- and high-intensity development derived from the 2011 
National Landcover Dataset (NLCD).  

For purposes of the SPRAWL model, we subdivide the entire Northeast region into non-
overlapping square application "panes" ~5 km on a side, each of which is embedded as the 
central pane within a square application 'window' consisting of 3x3 panes (~15 km on a 
side). Given this spatial template, the urban growth model is implemented as follows: 

 
Figure 2. Right figure depicts the two-dimensional model state-space for predicting 
growth patterns; it is based on Gaussian kernel (bandwidth=12.8 km) intensity of 
development (x-axis) and open water (y-axis) within which training windows (~15 km on a 
side) are located across three training areas in the Northeast (Fig. 1). Left figure shows the 
spatial distribution (at the ~5 km application pane resolution) of the 16 model points 
depicted in the model state space. 
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Figure 3. The radius (1, 1.5, or 2 standard deviations) around each of the 16 model points 
in the two-dimensonal state space, as defined in figure 2, and the number of sample 
points included in each logistic regression model for each of the six development 
transitions (see text for details). Missing circles represent model points for which the 
minimum sample size of 200 was not met within 2 standard deviations. 
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1) Demand — To begin, we establish the "demand" for additional cells of urban land-uses 
(including low-, medium-, or high-intensity development) at each 10-year timestep 
from 2010 to 2080 for each application pane based on downscaled county-level 
forecasts derived for a U.S. Forest Service 2010 Resources Planning Act (RPA) 
assessment (Wear 2011).  

2) Matching — Next, to allocate the total demand (in cells) within each census Core Base 
Statistical Areas (CBSA) or county to each application pane at each timestep, each 
application window is matched to the three most similar training windows based on 
geographic proximity and four landscape metrics based on the intensity of 
development, roads, and open water, and the density of roads within the window.  

3) Allocation — Once each application window is matched to three training windows, we 
allocate the total demand (in cells) within the corresponding CBSA or county for the 
current timestep to each application pane based on how much of the historical 
development was allocated to the training windows. The end result is that the total 
demand (in cells) for each CBSA or county is allocated among application panes such 
that the more historical development that occurred in the matched training windows 
the higher proportion of the future demand is assigned to the application pane. Lastly, 
the demand (in cells) in each application pane for the current timestep is allocated 
among the six transition types based on the historical distribution in the matched 
training windows.  

4) Suitability — For each transition type we create an inverse distance-weighted average 
logistic regression model based on the distance between the application window and 
each model point in the two-dimensional model state-space described above. We use 
these weighted-average models to compute the relative probability (i.e., "suitability") 
of each transition type for each 30 m cell in the application pane.  

Given the demand (in cells) for each transition type allocated to each application pane for 
the current timestep and the corresponding suitability surfaces, we simulate actual 
development for each transition type, as follows: 

1) Randomly select a cell to initiate the disturbance based on the relative probability (i.e., 
suitability) surface fit for that transition;  

2) randomly draw a patch size from the observed distribution of patch sizes in the three 
matching training windows for the corresponding transition type.  

3) spread outward from the initiation cell with a resistant kernel, where resistance is 
based on the inverse of the corresponding probability of transition for each 
neighboring cell, until the randomly selected patch size is met, allowing patches to 
extend across the boundaries of the focal application pane.  

4) repeat the process above, building development patches sequentially until the total 
allocation of cells for the transition type is exhausted in the application pane.  

Urban growth scenarios --Urban growth scenarios can be implemented by varying the 
overall amount of land that is developed (i.e., increase or decrease the amount of 
development relative to the RPA forecasted amount) or by adjusting ‘sprawl dial’ that 
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determines how contagious (compact vs. "sprawlly") growth patterns will be at the broad 
scale, compared to historic trends. 

In summary, the urban growth model acts as a disturbance process on the landscape, 
realizing development at the 30 m cell and patch level in each 5 km pane at each 10-year 
timestep until the allocated number of cells to be disturbed have been exhausted. The types 
of disturbance transitions (e.g., undeveloped to low intensity development, or medium- to 
high-intensity development) are allocated proportionately to that observed historically in 
the most similar training windows. The patterns of development for each transition type 
are modeled to reflect the historical patterns that occurred in landscapes having a similar 
landscape context. The sizes of patches developed are chosen to reflect the distribution 
observed historically in the most similar training windows. At the end of each 10-year 
timestep, once growth is realized, the resulting urban grid is fed back into the beginning of 
the process for the next timestep. Importantly, at each timestep each application window is 
matched to three new training windows and the weights assigned to each training model 
are recalculated . In this way, the model is non-stationary across space and time; as a 
window becomes more urbanized in the future, its growth patterns change to match the 
way more urbanized windows grew historically, but all subject to the projected demand for 
growth at the CBSA or county level. 

4 Detailed Description of Process  
The SPRAWL model consists of an extensive training phase and an application phase. A 
detailed description of each phase follows: 

4.1 Training Phase 

4.1.1 Training data 
We selected three sub-regions across the Northeast to be used as training areas: Maine, 
Massachusetts, and the Chesapeake Bay (Fig. 1). The primary training data sources were as 
follows: 

• Maine and Massachusetts — National Oceanic and Atmospheric Administration 
(NOAA) Coastal Services Center Coastal Change Analysis Program (C-CAP) data. 
These data were available for different time periods for many coastal areas within the 
U.S. However, not all inland areas were available. Much of the Northeast was available 
in grid format for the 1996 and 2006 timesteps: 
http://www.csc.noaa.gov/crs/lca/northeast.html.  

• Chesapeake Bay — Chesapeake Bay Watershed Landcover Data Series (CBLCD) 
available from 1984 and 2006: ftp://ftp.chesapeakebay.net/Gis/CBLCD_Series/, 
which was based partly on the C-CAP data as well.  

One strength of the matching approach described below is that the historical training data 
need not be available throughout the entire region. However, it is important that the 
training data be representative of conditions throughout the region and directly 
comparable to a land-use layer for the “current” (or starting) condition that is available 
throughout the region. The three training areas were chosen because they each have a 

http://www.csc.noaa.gov/crs/lca/northeast.html
ftp://ftp.chesapeakebay.net/Gis/CBLCD_Series/
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relatively long period of historical land-use GIS layers available (1996–2006 in Maine and 
Massachusetts from NOAA C-CAP, and 1984–2006 in Chesapeake Bay from CBLCD) that 
have been analyzed to evaluate change over multiple urban classes (low-, medium-, and 
high-intensity urban). Together, they represent varied amounts of current land-use 
intensity and historic land-use conversion that likely represent the full gradient found 
across the entirety of the Northeast.  

In many ways, the C-CAP data series is directly comparable to the 2006 National Land 
Cover Database (NLCD; Fry et al. 2011), which is available at the 2006 timestep throughout 
the entire Northeast and is the most consistent and spatially comprehensive product of its 
kind currently available. In all three training regions, the C-CAP data are available as 30 m 
resolution raster GIS grids classified into various land cover categories. Like the NLCD, the 
C-CAP developed land-use category is broken into four classes: high, medium, and low 
urban intensity, and developed open space.  

We examined each of the developed classes in comparison with aerial imagery for both 
NLCD and C-CAP, and determined that the developed open space class was unreliable and 
inconsistently characterized, and it had the lowest producer’s accuracy of any of the 
developed categories in the NLCD (Wickham et al. 2010), so we treat it as static in the 
urban growth model; i.e., the footprint of land classified as developed open space will 
remain constant during an urban growth simulation. The other three developed land 
classes generally perform better (Wickham et al. 2010), are fairly consistent between C-CAP 
and NLCD, and crosswalk directly. 

4.1.2 Development transitions 
For each training region, we compared the grid from the earlier timestep (e.g., the 1996 C-
CCAP grid) to the grid from the later timestep (e.g., the 2006 C-CAP grid), and a new 
change grid was developed with each cell defined as unchanged or as one of the following 
six transition types:  

transition 1 = undeveloped to low-intensity development; 
transition 2 = undeveloped to medium-intensity development;  
transition 3 = undeveloped to high-intensity development; 
transition 4 = low-intensity development to medium-intensity development;  
transition 5 = low-intensity development to high-intensity development; and 
transition 6 = medium-intensity development to high-intensity development.  

As mentioned above, the developed open space land-use class was inconsistent and 
therefore treated as static in the model, so it is not considered here. In addition, note that 
we did not consider transitions to lower urban intensities or transitions back to a non-
urban or undeveloped condition. While these transitions do occur, we believe them to be 
extremely rare (and thus of minor importance in the urban growth model) and, moreover, 
unreliably assessed from the training data. 

4.1.3 Training windows 
We divided each training region into non-overlapping square training "windows" 
approximately 15km on a side (498 30 m cells, or 14.94 km on a side)(Fig. 1). The choice of 
window size reflected a compromise between keeping the windows as small as possible to 
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reflect meaningful local variation in landscape context that might influence urban growth 
and keeping the windows large enough to avoid the idiosyncrasies of very small landscapes 
and to reduce computational time. 

For each training window, we used the change grid to calculate the historical annual urban 
growth rate. Specifically, we calculated and stored for later use in the Matching algorithm 
(see below) three statistics for each training window: 

1) Rate of new urban development — we calculated this by counting the number of 
cells that underwent new development during the training period (i.e., the total 
number of 30 m cells in the window that underwent transition types 1, 2, or 3), 
divided by the length of the training period.  

2) Distribution of transition types — we calculated the proportion of the total number 
of cells exhibiting any transition (transition types 1-6) during the training period 
comprised of each of the six transition types.   

3) Patch size distribution — we also tabulated the distribution of development patch 
sizes, where a patch was defined as a set of contiguous cells (based on the eight 
neighbor rule) that underwent the same development transition.  

4.1.4 Suitability models 
For each training window, we computed the Gaussian kernel (12.8 km bandwidth) intensity 
of development and open water, and converted these values to z-scores (i.e., mean=0 and 
standard deviation=1). Thus, each training window occupied a position in a standardized 
two-dimensional state space defined by the intensity of development and open water (Fig. 
2). We located 16 uniformly distributed "model points" or locations in this state space. For 
each of these model points, we fit separate binary logistic regression (i.e., "suitability") 
models for each of the six transition types to a set of training points (i.e., cells of the 
corresponding transition type at least 150 m apart to avoid pseudo-replication, matched 
with an equal number of randomly selected "available" cells) from the training windows 
located within 1, 1.5 or 2 standard deviations from the model point in the model state space. 
We used the smallest of the three standard deviations needed to achieve a minimum of 200 
training points (half of which experienced that transition and half of which were available 
points) in order to have the fitted model most closely reflect landscape conditions described 
by that model point in the two-dimensional state space. If we could not meet the minimum 
sample size of training points within 2 standard deviations of the model point, we dropped 
the model point from consideration.  

Predictor variables in the logistic regression models included:  

• Gaussian kernel (bandwidths=100, 800 and 3,200 m) intensity of open water; 
• Gaussian kernel (bandwidth=800 m) intensity of primary and secondary roads; 
• Gaussian kernel (bandwidth=800 m) intensity of all roads except motorways; 
• Gaussian kernel (bandwidth=3,200 m) intensity of all roads except motorways; 
• Gaussian kernel (bandwidths=400 and 3,200 m) intensity of weighted development 

(weights for low-intensity development=1, medium-intensity development=2, high-
intensity development=3; NA on all cells not eligible for development); 

• Transformed slope based on a univariate logistic regression model (Fig 4); and 
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• Transformed distance to the 
nearest road (excluding 
motorways) based on a 
univariate logistic regression 
model (Fig. 5).  

Note, the selection of the final suite 
of predictor variables listed above 
was informed by an earlier (phase 1 
of the DSL project) comprehensive 
and objective hierarchical model 
selection process involving 103 
different predictors representing 
combinations of a large number of 
candidate variables and wide range 
of spatial scales.   

In addition, the transformations 
applied to slope and distance to road 
were based on preliminary 
evaluations of results using the 
untransformed variables. In 
particular, even with a large effect 
size (i.e., magnitude of the 
standardized regression coefficient) 
for untransformed distance to roads, 
due to the disproportionate amount 
of land away from roads, we ended 
up simulating too much new 
development away from roads (by 
comparison to the distribution 
observed in the training data). 
Similarly, we were simulating too 
much development on steep slopes.  
In both cases, these transformations 
ensured that new simulated 
development better reflected the 
historical patterns with respect to 
distance from road and slope. 

Despite using the transformed 
distance to the nearest road in the 
logistic regression models, we noted 
that our logistic regression models 
were not forcing enough of the new 
development (transitions 1-3) to be 
close to roads. This was due to bias 
in the training data resulting from 

 
Figure 4. Gussian transformation of slope (%) for 
use in logistic regression models to predict 
probability of urban development. 

 
Figure 5. Gussian transformation of distance (m) to 
road (excluding motorways) for use in logistic 
regression models to predict probability of  urban 
development. 
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geo-processing to eliminate the 
confounding of roads and 
development in the C-CAP and 
CBLCD data. To adjust for this bias, 
we multiplied the logistic functions 
for transitions 1-3 by a negative 
exponential function of distance to 
nearest road (exponent = -  
0.011965238). The latter was fit to 
the distribution of new developments 
(transitions 1-3 pooled) observed in 
the hindcast dataset we developed to 
validate the urban growth model (see 
below). We did not apply this road 
adjustment to transitions 4-6. 

Ultimately, we ended up with a 
logistic regression model (a.k.a. 
suitability model) to predict each of 
the six transition types for each of 
12-16 model points (depending on 
transition type) uniformly 
distributed throughout the state space defined by the intensity of development and open 
water (Fig. 3, Appendix A). During the application phase (see below), these models are 
used in the Suitability algorithm to determine the pattern of growth for each transition type 
in each application window.   

4.2 Application Phase 
The application phase involves simulating urban growth according to a user-specified 
scenario based on an algorithm consisting of several interacting components, as described 
below. The basis for the "current", or initial, land-use condition in the urban growth model 
(set to be roughly the year 2010) is the set of developed landcover classes in DSLland, 
including low-, medium- and high-intensity development derived from the 2011 National 
Landcover Dataset (NLCD).  

For purposes of simulating urban growth, we subdivided the entire Northeast region into 
non-overlapping square application "panes" ~5 km (166 cells, or 4,980 m) on a side, each of 
which is embedded as the central pane within a square application "window" consisting of 
3x3 panes (~15 km on a side, similar to the training windows)(Fig. 6).  

4.2.1 Determining the demand 
To begin, we established the "demand" for additional cells of urban land-uses (including 
low-, medium-, or high-intensity development) at each 10-year timestep from 2010 to 
2080. The demand dictates the overall amount (in cells) of urban land-uses to allocate 
throughout the area of interest in each timestep.  

Figure 6. Application "panes" (~5 km on a side) 
embedded within overlapping application 
"windows" (~15 km on a side) as used in the 
Application phase of the urban growth model. 
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We based the demand for urban growth at each future timestep on county-level forecasts 
derived for a U.S. Forest Service 2010 Resources Planning Act (RPA) assessment (Wear 
2011), which can be found on the last sheet of this file: 

https://www.fs.fed.us/research/docs/rpa/2010/2010RPA_Assessment_landuse 
projections_county_final.xlsx 

For our purposes, it was necessary to resolve three issues with the RPA data: 

1) RPA projections were for 424 counties in the Northeast, but some of these were 
merged counties. There was no data on the counties that were merged out of existence 
and it was not 100% clear for all of these counties which of the neighboring counties 
they were merged with. With most counties it was obvious; for example, in Virginia 
some major cities are essentially separate counties with their own FIPS code (county 
level ID). These cities are distinct from but completely surrounded by a county and so 
clearly would have been merged into that county. For other counties that were merged 
out of existence in the RPA dataset it was harder to tell which of the adjacent counties 
they were merged with. Ultimately, based on the geography we manually generated a 
crosswalk between the full set of counties and the RPA reduced set containing some 
merged counties.  

2) Twenty-four counties in the RPA assessment appeared to have missing data for all 
timesteps (for unknown reasons); the corresponding rows in the tables indicated zero 
development. We interpreted these projections to be erroneous and replaced these 
zeros with imputed values based on the mean of the 10 counties that were most similar 
in population density. 

3) RPA projections extended only to the year 2060. We extrapolated the values reported 
from 2050-2060 to the expected development in 2070 and 2080.  

4) RPA projections were made for three scenarios are linked to globally consistent and 
well-documented scenarios used in the Intergovernmental Panel on Climate Change 
(IPCC) 4th Assessment (AR4)(IPCC 2007). The scenarios were the A1B, A2, and B2 
scenarios, which include a range of future global and U.S. socioeconomic and climate 
conditions likely to affect future U.S. resource conditions and trends (Nakicenovic and 
others 2000). We decided to use the average projections across these three scenarios 
to better reflect the uncertainty in future conditions. 

With these issues resolved, we assigned each application pane to a single county (or merged 
county) based on a majority rule, producing a gridded version of the RPA county map at 5 
km resolution, and then aggregated the application panes into U.S. Census Bureau 2010 
Core Base Statistical Areas (CBSAs) where they existed, or retained the forecasts at the 
county level for those counties not in CBSAs (Fig. 1). We converted the RPA forecasts 
which were given in absolute area to development rates, computed as the projected 
development divided by the land area (as reported in the RPA assessment), and then 
converted this to an absolute demand (in cells) for each CBSA or county in our gridded 
version by multiplying the forecasted rate of development by the count of land cells within 
the gridded CBSA or county. Note, calculating development rates based on land area as 
reported in the RPA assessment corrected for the discrepancy in land area between RPA 
counties and our gridded version. 

https://www.fs.fed.us/research/rpa/assessment/
http://www.treesearch.fs.fed.us/pubs/39404
http://www.treesearch.fs.fed.us/pubs/39404
https://www.fs.fed.us/research/docs/rpa/2010/2010RPA_Assessment_landuse%20projections_county_final.xlsx
https://www.fs.fed.us/research/docs/rpa/2010/2010RPA_Assessment_landuse%20projections_county_final.xlsx
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4.2.2 Simulating urban growth 
Based on the total demand (above), we simulate urban growth for each timestep as follows: 

1) Matching — First, each application window is matched to the three most similar 
training windows (from any of the three training regions) based on geographic 
proximity and four landscape metrics:  

• Gaussian kernel (bandwidth=12,800 m) intensity of development; 
• Gaussian kernel (bandwidth=12,800 m) intensity of all roads, except motorways; 
• Gaussian kernel (bandwidth=12,800 m) intensity of open water; and 
• Density of roads (except motorways) within the window.  

Note, the selection of the landscape structure variables listed above was informed by 
an earlier (phase 1 of the DSL project) comprehensive and objective model selection 
process involving 50 different variables to determine which combination of variables 
had the greatest ability to predict the amount and pattern of future growth in each 
training window.  

In addition, the reason matching occurs at the window scale, but then the allocation 
described below is applied at the pane level (which represents 1/9 of the window size), 
is to prevent major boundary effects across application panes. In this way, each 
application pane shares 2/3 of its window with its four nearest neighboring panes 
(Fig. 6), preventing abrupt differences from occurring between neighboring panes. 

For each application window and training window, we compute the four landscape 
metrics listed above and convert the values to z-scores (i.e., mean=0 and standard 
deviation=1). We then compute a similarity score between each application window 
and every training window based on Euclidean distance in z-scores, such that it ranges 
from 1 if all four metrics are the same and 0 if all four metrics differ by 6 standard 
deviations. We then multiply these similarity scores by a geographic adjustment that 
applies a penalty to training windows based on how much farther they are from the 
application window than the closest training window (for reasons discussed below). 
The adjustment is based on a Gaussian function such that it ranges from 1 at small 
deltas (i.e., the closest training window gets an adjustment of 1) to 0.5 at very large 
deltas (Fig. 7). The resulting adjusted similarity scores are rank ordered and the three 
most similar (weighted by proximity) training windows are matched for each 
application window.  

Note, due to the lack of regionally available and consistent spatial data, many of the 
local socio-economic drivers (e.g., zoning laws, median income, etc.) that influence 
land-use change have not been incorporated into the model. We recognize that 
application windows are likely to grow more like windows near themselves simply 
because they have the same local factors acting upon them. To partially account for 
this local variation, we added the local weighting component described above to the 
matching algorithm. In this way, an application window in Maine is more likely to be 
matched with training windows in Maine than training windows in Massachusetts or 
Chesapeake Bay, with the expectation that they will grow more like Maine has grown 
historically. 
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2) Allocation — Once each 
application window is matched 
to three training windows, we 
allocate the total demand (in 
cells) for the current timestep 
within each gridded CBSA or 
county to each application pane. 
To do this, we calculate the 
average total amount of 
historical development (the 
"match amount") in the three 
training windows. This match 
amount is subsequently 
adjusted to reflect the 
proportion of the application 
window that is buildable and 
the proportion of the buildable 
in the window that is in the 
central pane. Specifically, the 
match amount is multiplied by 
the proportion of the window 
that is buildable (i.e., not water, 
wetland, secured, or already 
developed) and the proportion 
of the buildable in the window 
that is in the central pane. We 
also adjust this match amount 
as necessary to ensure that no 
more than 14% of the buildable cells for transitions 1-3 (i.e., available for new 
development) in the pane are built in any one decade. This development threshold was 
based on the 99th percentile of the corresponding distribution observed in the hindcast 
dataset we developed to validate the urban growth model (see below). The result is an 
interim measure of the amount to allocate to each application pane that reflects the 
historical distribution among panes having a similar landscape context. Lastly, the 
absolute demand (in cells) for each application pane in the current timestep is 
computed by dividing the pane's interim match amount by the total interim match 
amount across all panes in the corresponding CBSA or county. In this manner, the 
total demand (in cells) for each CBSA or county is allocated among application panes 
such that the more historical development that occurred in the matched training 
windows the higher proportion of the future demand is assigned to the application 
pane. 

Next, the demand (in cells) in each application pane for the current timestep is 
allocated among the six transition types based on the historical distribution in the 
matched training windows, with the sum of the first three transitions (i.e., 
undeveloped to low-, medium- or high intensity developed) made to match the total 

Figure 7. Adjustment multiplier for similarity 
scores between application windows and training 
windows in which the closest training window 
receives a delta=0 and no adjustment, and as the 
delta (difference from the closest window) increases 
the adjustment multiplier decreases according to the 
logistic Gaussian function shown.  
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allocation to the pane, and the ratio among all six transitions made to match the 
historical ratios in the matched training windows.   

3) Suitability — Once we determine the number of cells needed for each transition type 
in each application pane for the current timestep, we determine the probability of each 
transition type occurring at the 30 m cell level in each pane. To do this, for each 
transition type we create an inverse distance-weighted average logistic regression 
model based on the distance between the application window and each model point in 
the two-dimensional model state-space developed during the Training phase 
described above. For this calculation, we force the distance to be at least 0.05 standard 
deviations for all model points so that a single logistic regression model cannot get 
100% of the model weight. Next, we use these weighted-average models to compute 
the relative probability (i.e., suitability) of each transition type for each 30 m cell in 
the application pane (Fig. 8). Lastly, for transition types 1-3, we assign a zero value to 
all non-buildable cells, which includes open water, wetland, secured lands, roads and 
developed. For transition types 4-6, we assign a zero value to all cells not of the focal 
class (e.g., for transition type 4, only cells of low-intensity development are allowed to 
have a non-zero value).  

Note, because the Gaussian kernel (12.8 km bandwidth) intensity of development 
surface is changing over time due to urban growth, the position of each application 

 
Figure 8. Probability of development (i.e., suitability) at the 30 m cell level for a random 
application window and timestep for each of six transition types (see text for details) for a 
random location in the Northeast. 
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window in the two-dimensional model state space is shifting over time as well. 
Consequently, the patterns of urban growth in an application window will shift over 
time and become more like the patterns characteristic of increasingly urbanized 
windows. This feature ensures non-stationarity in the patterns of urban growth over 
time, which we deem an important and somewhat novel feature of our urban growth 
model. 

4) Disturbance patches — Given the demand (in cells) for each transition type allocated 
to each application pane for the current timestep and the corresponding suitability 
surfaces, we simulate actual development for each transition type, as follows: 

a) Randomly select a cell to initiate a disturbance based on the relative probability 
(i.e., suitability) surface for that transition, but if the candidate pool of buildable 
cells vastly exceeds the development target, we also limit the selection of cells to 
those in the top 15th percentile of suitability within the application pane; thus, cells 
with the highest suitability values are more likely to initiate a disturbance;  

b) randomly draw a patch size from the observed distribution of patch sizes in the 
three matching training windows for the corresponding transition type; 

c) spread outward from the initiation cell with a resistant kernel (see technical 
document on integrity, McGarigal et al 2017, for a detailed description of resistant 
kernels), where resistance is based on the adjusted complement of the 
corresponding probability of transition for each neighboring cell, until the 
randomly selected patch size is approximately met, and allowing patches to extend 
across the boundaries of the focal application pane. Specifically, resistance is 
calculated as: 

zij = (1 - pij) × m 

rij = zij - min(zij) + 1 

where pij = probability of the jth transition type for the ith cell, m = resistance factor 
(currently set to 30), which determines the theoretical upper bound of resistance, 
zij = interim value, and rij resistance of the jth transition type for the ith cell. Thus, 
resistance values range from 1 to an upper bound of 31 (m + 1).  

Note, non-buildable cells (open water, wetland, secured lands, road and developed 
for transition types 1-3cells, and anything not of the focal development class for 
transition types 4-6) are assigned double resistance, thus the spread can cross 
these but with much higher resistance. We then zero out the spread kernel for non-
buildable cells and determine the threshold in the spread kernel height that yields 
the size closest to the target patch size. All the cells in the disturbed patch over the 
threshold value are set to the new land-use class of the development, otherwise 
they retain their original value, and once a cell has transitioned in a given timestep, 
it is masked and not allowed to transition again during that timestep. Note, 
because a single resistant kernel can in some cases spread through open water, 
wetland, secured, road and developed, it is possible for a single disturbance to 
create more than one discrete development patch. 
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d) repeat the process above, building development patches sequentially, until the 
total allocation of cells for the transition type is exhausted in the application pane 
(Fig. 9).  

4.2.3 Urban growth scenarios 
Urban growth scenarios can be implemented in two ways: 

1) Development rate — the overall amount of land that is developed (or the 
corresponding rate of development) can be modified from the baseline demand 
computed above; i.e., to increase or decrease the amount of development relative to 
the RPA forecasted amount. Note, in this scenario analysis the relative allocation of 
development among application panes and patterns of development at the 30 m cell 
level remain the same as the baseline (i.e., they reflect historical allocation and 

 
Figure 9. Simulated development transition patches for a random application window 
and timestep. 
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patterns in similar landscape contexts), but the total amount of development varies 
(Fig. 10). 

2) Sprawl — the other factor that can be adjusted is the "sprawl dial" which allows us to 
create scenarios that are more “sprawlly” than the historical training data. The 
baseline scenario acts as the status quo (sprawl level= 0) and distributes the number 
of new urban cells in accordance with historical patterns using the allocation process 
described above. For other settings of the sprawl dial a smoothed allocation is 
calculated and averaged with the baseline allocation. Briefly, the smoothed allocation 
is created with a variable bandwidth Gaussian smooth of the baseline allocation. The 
development allocated to each application pane in the baseline allocation is 
reallocated to itself and nearby panes based on a Gaussian kernel where the 
bandwidth ranges from 5 to 15 km, with larger bandwidths chosen when the focal pane 
has more existing development. Finally, a weighted average of the standard baseline 
allocation and the smoothed allocation is taken with the weight determined by the 
setting of the sprawl dial. Thus, as the sprawl dial is increased from zero, more of the 
allocation to urban areas is dispersed to the outlying less urban areas, which 
determines how contagious (compact vs. "sprawlly") growth patterns will be at the 
broad scale compared to historical trends (Fig. 10). 

5 Model evaluation 
It is impractical to truly validate the SPRAWL model because the outcome depends strongly 
on the forecasts of future development, which for the current application was based on the 
RPA forecasts which in turn were based on several assumptions about global and U.S. 
socioeconomic and climate trends likely to affect future U.S. resource conditions and trends 
as reflected in the IPCC 4th Assessment A1B, A2, and B2 scenarios, none of which can be 
verified without waiting to see if the predictions come true. However, hind-casting provides 
an alternative for evaluating model performance. For this purpose, we used the NLCD 
change grid for the period 2001-2011, in which each cell was coded as either unchanged or 
one of our six transition types, to create a year ~2000 version of our DSL land cover grid 
using the same process that we used to create the 2010 DSL land cover grid (McGarigal et al 
2017) but using the 2001 NLCD as input instead. 

Next, we used the DSL 2000 land cover grid as the initial condition and ran the SPRAWL 
model for a single 10-year timestep. For the demand, we computed the realized demand for 
new development (transition types 1-3) within each subregion by tallying the number of 
corresponding transitioned cells in the new DSL 2000-2010 change grid, but excluding any 
cells that fell in what we had mapped as secured or wetland (since we designated these as 
not buildable in the SPRAWL model). Thus, we set demand to equal exactly what we 
observed for the buildable portion of the landscape, effectively removing demand from the 
model evaluation (since our purpose was not to evaluate the RPA forecasts). Next, we 
allocated the demand and derived suitability surfaces as usual, with a minor variation in the 
latter. In the SPRAWL model it is unnecessary to normalize the suitability surfaces derived 
from the weighted-average logistic regression models before building disturbance patches 
because we build disturbance patches until the demand is exhausted within each pane. 
Here, however, for each transition type it was necessary to normalize the surface within  
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Figure 10. Urban growth simulated between 2010-2080 under four scenarios: (a) 
baseline, (b) increased demand (25% greater than baseline), (c) increased sprawl (sprawl 
level =0.75, reflecting an arbitrary, but relatively high level of sprawl in which new 
development is redistributed somewhat from locations close to urban centers to further 
away), and (d) combined increased demand and sprawl, for an area east of Scranton 
Pennsylvania on the PA, New York, New Jersey tri-state corner. Existing development in 
2010 is shown in shades of blue (with darker shades indicating higher-intensity 
development), whereas new development simulated between 2010-2080 is shown in 
corresponding shades of red. 
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each pane to sum to 1 and multiply by the demand in number of cells, so that the final 
surface reflected both the allocation to the pane and the relative suitability of the cell. 

Next, for each of the transition types involving new development (i.e., types 1-3), we 
censused cells of that transition type from the DSL 2000-2010 change grid across the entire 
application region and all available buildable cells (including those that got built) and 
recorded the probability of development from the final suitability surface for each cell 
(referred to below as the "census" dataset). We also randomly sampled cells of that 
transition type from the DSL 2000-2010 change grid across the entire application region, 
ensuring a minimum 150 m apart (as in the Training phase), and an equal number of 
random buildable cells (including in the pool of available cells those that got built) under 
the same proximity constraint from the DSL 2000 grid and similarly recorded the 
probability of development from the final suitability surface (referred to below as the 
"sample" dataset). 

To evaluate the performance of the urban growth model, it is important to recognize that 
the data were appropriately considered observations of "presence-vs-available" rather than 
"presence-vs-absence", since the absence of a development transition at a cell doesn't mean 
that the cell wasn't suitable for a transition, only that by chance it wasn't developed. Thus, 
the cells that underwent a transition were simply a subset of those that could have 
undergone a transition given the same suitability. Consequently, conventional statistics for 
evaluating binary logistic regression models must be interpreted with caution. 
Nevertheless, we computed the area under the Receiver Operating Characteristic Curve (or 
AUC, e.g. Fielding and Bell 1997) to gauge the model's discriminatory ability, and we used 
the sample dataset described above for this purpose. In our context, AUC is equal to the 
probability that our model-derived probability of development will rank a randomly chosen 
transitioned cell higher than a randomly chosen available cell.  

We also computed two statistics appropriate for evaluating models derived from "presence-
vs-available" data, and for these statistics we used the census data described above. First, 
we computed the coefficient of concordance (Lin 1989) between observed and predicted 
based on the methods recommended by Johnson et al. (2006). Observed is the number of 
transitions in each probability of transition bin (n=100 equal-interval bins); predicted is the 
expected number in each bin given the proportion of available (represented by the random 
buildable) in each bin, times the bin's average probability of transition, times the total 
number of observed transitions. The concordance coefficient measures the strength of 
agreement (in both accuracy and precision) between these two allocations based on their 
deviation from a 45-degree line (i.e., a line originating at 0 with a slope of 1), with values 
closer to 1 indicating better agreement and thus better overall model performance. 

Second, we computed the weighted skewness statistic based on the method described by 
Gregr and Trites (2008). Briefly, this method calculates the (weighted) skewness of the 
distribution of model-derived predicted probability of transition values, whereby the more 
predictive the model is the higher the proportion of transition points that are at located at 
the higher end of the probability scale, resulting in a more left-skewed distribution. 
However, to account for the distribution of available probability values across the entire 
application region, the count of transition points in each probability bin (n=100 equal-
interval bins) is weighted by the proportion of available points that are in each bin, and 
then the skewness is calculated on this weighted distribution of counts. Here, we truncated 
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the upper 0.1% of the distribution by removing the upper bins due to very low sample sizes 
in the "available" counts which produced unreliable bin weights. 

6 Alternatives Considered and Rejected 
There are many alternative modeling frameworks available to model future urban growth 
including those utilizing economic/employment theory, transportation models, agent-
based models, cellular automata, and hybrid models. The largest limiting factor to most of 
the widely used urban growth models are that they are designed and typically applied at 
finer spatial scales than the Northeast and for shorter projections than the 70-year 
projections used in the LCAD model. Such models are able to take advantage of a number 
of variables, particularly socio-economic variables, that are important to explaining and 
driving growth, but difficult to obtain in a spatially explicit and consistent format across the 
entire Northeast. In addition, many existing urban growth models are prohibitively 
computationally intensive, and could thus not be employed efficiently at the scale of the 
Northeast given our current computing environment. 

Nonetheless, there are still dozens of modeling frameworks that have been applied across 
comparably large extents (e.g., SLEUTH, CLUE, DINAMICA, GEOMOD, etc.). For the most 
part, these models are regionally specific and would require substantial local modification 
and calibration in order to be implemented for the Northeast. In addition, they typically 
only model binary responses (i.e., developed or not). Despite the myriad of urban growth 
models available, none were able to meet our model objectives (outlined in Section 2): an 
empirically-based, non-stationary model across space and time with multiple classes of 
urban intensity that could be applied across the entire Northeast for a 70-year projection 
under multiple scenarios.  

Upon settling on the new multi-tiered, non-stationary modeling approach, there were still 
many alternatives to each of the component modules. 

6.1 Demand 
After considering many alternatives to the demand module, we decide that since the 
amount of growth in the future is so uncertain and likely to change based on many factors 
beyond our understanding or predictive ability (including global and local economic 
factors), the amount of growth in the future was best implemented in the user-defined 
scenario framework, where it could be easily adjusted to reflect different future scenarios. 
We decided to use the RPA forecasts as our baseline scenario. Alternative approaches to 
determining demand, or the amount of growth in the area of interest, include: 

• Census-based — The U.S. Census bureau has projected population sizes (as well as age 
classes) for the next century. They have created high, low, and medium population 
increase projections which could be used for multiple scenarios. These numbers could 
be downscaled regionally and locally based on historic allocation of population and 
growth. This downscaling would yield population projections in each area unit at each 
timestep. The major implementation constraint to this alternative is in translating 
population projections to land use demand projections, we would need to project 
residential density (people/acre) for each unit area as well. Although this could be 
done by trend extrapolation, or by a “sprawl index” (e.g., Frenkel and Ashkenazi 
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2008) in conjunction with the extensive literature on drivers of density and sprawl in 
the U.S., we felt this incorporated an additional layer of uncertainty into the model. It 
was also not directly tied to the SRES scenarios. 

• SRES-based — By downscaling SRES scenarios, we could develop land-use demand 
projections for the Northeast. County-level population projections are available under 
four SRES scenarios through 2100 (EPA 2009). This project also estimated housing 
density at the 1-ha resolution and impervious surface cover at the 1-km resolution 
every 5 years through 2100. The USGS LandCarbon project is also currently 
implementing a nationwide downscaling of the SRES scenarios (Sleeter and Sohl 
2010). Ultimately this approach had the same shortcoming as the previous approach, 
in that it required an extra step to convert population projection to land-use 
conversion projections. 

• Trend extrapolation from other sources — USDA NRCS National Resources Inventory 
(USDA 2009) has calculated various land-uses by state in 1982, 87, 92, 97, 02, 07. 
This land-use trend could be extrapolated (and modified to account for alternative 
scenarios) going forward. The largest limitation to this dataset is that “developed land” 
is not further broken out. The USGS Land Cover Trends Project (e.g., Drummond and 
Loveland 2010) has also calculated land-uses by ecoregion in: 1973, 1980, 1986, 1992, 
2000. These data are also available for trend extrapolation: 
http://landcovertrends.usgs.gov/download/overview.html and may be used in 
designing alternative scenarios that could be implemented in future phases. 

6.2 Urban suitability 
Many other empirically and/or expert-derived analytical approaches could have been 
utilized for the urban suitability module, including geographically-weighted logistic 
regression, polytomous logistic regression, linear or Poisson regression, frequency ratio, 
analytical hierarchy process, and neural networks. Many of these approaches (including 
neural networks) are computationally difficult, particularly across the large Northeast 
extent, and many have prohibitive assumptions. Logistic regression, our chosen method, is 
a well-known, easily implemented approach that has been shown to perform as well or 
better than many other analytical approaches for modeling urban growth. We ran early 
versions of this model using nonparametric classification trees instead of logistic 
regression. Although classification trees performed marginally better (correct classification 
rates were slightly higher), they did not perform well enough to warrant the additional 
computational expense required to run them the number of times required in the model 
(many times per 15km training and application window). Moreover, they did not produce a 
probability of development surface that deemed useful, not only for implementing 
disturbance patches, but also to serve as the basis for the integrated probability of 
development product (McGarigal et al 20170 that we used in several of the landscape 
design products. 

6.3 Allocation 
The allocation component could have been implemented a variety of other ways, including: 

http://landcovertrends.usgs.gov/download/overview.html
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• CLUE — This approach utilizes a transition matrix, which dictates the probability of 
each possible transition between land-uses (which must be parameterized), and 
weights of the importance of each land-use (which is iteratively calibrated) to assign 
land-uses to each cell based on suitability until demand is reached. 

• USGS FORE-SCE — This approach is used in the LandCarbon project (Soyl and Saylor 
2008). This approach is similar to (and based on) CLUE, but it converts “patches” 
rather than cells by sampling the distribution (mean and standard deviation) of the 
patch size of conversions that occurred historically. (Note: they changed this to sample 
from a pre-determined patch library because it took too long to model organic growth 
around a focal cell until the correct patch size was reached using the highest 
probability neighboring cells). 

• Cellular automata (CA) approach — This approach involves building a cellular 
automata model (where transition rules are governed by the cell neighborhood) and 
combining the results of the CA with those of the suitability model (e.g., White and 
Engelen 2000; Zhao and Murayama 2007). 

• EPA approach — This approach uses county level population projections (from SRES 
scenarios) to allocate housing units using SERGoM (Theobald 2005), which uses 
historic housing density to allocate number of housing units and places them spatially 
using: land ownership, travel time, and previous growth.  

Ultimately, our approach allowed us to easily combine and implement the empirically-
based logistic regression models and matching algorithm, which was more non-stationary 
than many of the approaches outlined above, along with our resistant kernel approach to 
build disturbance patches, which is analogous to a cellular automata approach. 

7 Major Implementation Constraints 
The challenges involved in implementing the urban growth model across the Northeast are 
many, the largest being the availability of accurate current and historical land-use data. In 
order to create an empirically-based model, it was necessary to obtain historical land-use 
information. The NLCD is the only land cover product available across the entire Northeast 
with multiple urban density classes (e.g., high, medium, and low). However, while 
historical information for multiple urban classes was available for a 10-year time period 
(2001–2011), the changes in classification methodology between 2001 and 2011 resulted in 
too much uncertainty in the observed transitions. Because our urban growth model is non-
stationary, however, it is not necessary to train the data across the entire Northeast. Rather, 
representative training data can be used and applied to the entire extent due to our unique 
matching algorithm. This design aspect of our model allowed us to use datasets that were 
long enough in time but smaller in spatial extent to train the model, allowing us to use the 
NOAA C-CAP and CBLCD datasets in place of NLCD. Still, as a starting point for the initial 
condition (timestep 0 in the model set to be roughly 2010) to project growth forward in 
time, we are limited to a consistently available land-use dataset, and the NLCD remains the 
only product available at the regional scale.  

In examining the NLCD data it became clear that the developed classes included the 
footprint of roads, as well as often a rather large buffer around roads. In addition, certain 
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wetland surfaces had been classified as urban land-uses as well. To correct these and other 
errors, roads and wetlands were burned over the development classes in the NLCD in a 
multi-step cleaning process to create the DSLland grid. 

As a result of the model being trained with C-CAP and applied to NLCD, the differences 
between the two datasets are extremely important, and the cleaning process had to be 
applied to the C-CAP training data as well to ensure that the values used for matching were 
as close as possible to those in the DSLland. In comparing the two layers, however, 
although the amount of development (or composition) was similar for the two datasets, the 
pattern was slightly different, causing the landscape configuration metrics to be very 
different in the two datasets. As a result, the configuration metrics were dropped from the 
analysis and matching between training and application windows relied solely on 
composition and location metrics. This is a major shortcoming of our current approach and 
one that can only be remedied with consistent historical land use/cover data over a 
sufficiently long time period and over the full extent of the Northeast. Should future 
versions of NLCD maintain consistent mapping rules (e.g., from 2011 to 2021), it may be 
possible to retrain the model on the changes observed in the NLCD data. 

There are several other implementation constraints. The model does not allow for cells to 
undergo "rewilding" (i.e., conversion from a developed class to an undeveloped class), and 
it does not dynamically incorporate "urban open" land-uses. Both of these are a result of 
the training data we used. We had very limited confidence that the conversion events from 
developed to undeveloped land were real and could be reliably modeled.  

The current model also does not incorporate the building of new roads. Clearly roads are an 
important driver of land-use conversion, and they are key in many aspects of this modeling 
approach, including the suitability surface and the matching algorithm. New roads are very 
difficult to predict with accuracy. Smaller roads are not necessarily required to accurately 
model land-use change, as the new urban cells themselves behave as roads, acting as a 
magnet for additional future development. New large roads are infrequent, unpredictable 
events and therefore we decided probably best handled on a case by case basis as custom 
scenarios. However, future versions of our urban growth model could strive to include 
modeling the development of new roads associated with urban growth. 

Unfortunately, the current model is unable to account for local effects such as zoning 
bylaws and socioeconomic factors. We tried to indirectly incorporate these effects, but only 
in part and at a relatively coarse scale, by adding the geographic distance of the training 
windows to the application window into the matching algorithm. Although this has the 
unintended consequence of adding an element of stationarity to the model, we think that 
the benefits of including local variation outweigh the costs of increased stationarity. 
Additionally, although the local variation element incorporates elements of older zoning 
laws, it does not account for the adoption of new policies that could influence future growth 
patterns. 

Lastly, our urban growth model operates under the general assumption that the factors that 
affected the local amount and spatial pattern of development in the recent past (as reflected 
in our allocation of demand to individual application panes and the corresponding 
suitability surfaces) will persist into the future. Note, while the allocation of development at 
the CBSA or county level is not explicitly tied to the past (rather, it is based on the RPA 
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forecasts), the local allocation within CBSAs and counties is governed by the historical 
allocation to similar local landscapes. Unfortunately, it is impossible to predict how these 
local drivers might change in the future, and so using the past seems like the best, if not the 
only, feasible option.   

8 Major Risks and Dependencies 
As noted above, our modeling framework is dependent upon the 2011 NLCD product to 
represent developed land uses for the initial 2010 timestep, and the NOAA C-CAP and 
CBLCD datasets to represent historical growth patterns. Therefore, any errors associated 
with these datasets will be projected forward into future timesteps. We are grateful to 
MRLC, NOAA, USGS, and the Chesapeake Bay Program for making these datasets 
available. 
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10 Appendix A 
Table 1. Final logistic regression models and associated statistics for each of the six 
development transition types for each of the model points in the two-dimensional state 
space depicted in Figures 2 and 3. Note, models were not fit for transitions and model 
points with <200 training points in the training windows located <2 standard deviations 
from the model point in the state space (see text for details).  

Transition Average 
D2 

Average 
Kappa 

Average 
cross 
validated 
Kappa 

Average 
sample 
size 

Number of 
training 
windows 
with 
models 

1 New Low Intensity 0.51 0.75 0.65 233 799 

2 New Medium Intensity 0.55 0.78 0.69 206 480 

3 New High Intensity 0.59 0.81 0.72 164 304 

4 Low to Medium 0.31 0.61 0.51 106 212 

5 Low to High 0.42 0.71 0.61 99 180 

6 Medium to High 0.33 0.63 0.51 92 122 
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